
JSS Journal of Statistical Software
May 2004, Volume 11, Issue 1. http://www.jstatsoft.org/

Using Perl for Statistics:

Data Processing and Statistical Computing

Giovanni Baiocchi
University of Durham

Abstract

In this paper we show how Perl, an expressive and extensible high-level programming
language, with network and object-oriented programming support, can be used in process-
ing data for statistics and statistical computing. The paper is organized in two parts. In
Part I, we introduce the Perl programming language, with particular emphasis on the fea-
tures that distinguish it from conventional languages. Then, using practical examples, we
demonstrate how Perl’s distinguishing features make it particularly well suited to perform
labor intensive and sophisticated tasks ranging from the preparation of data to the writing
of statistical reports. In Part II we show how Perl can be extended to perform statistical
computations using modules and by “embedding” specialized statistical applications. We
provide example on how Perl can be used to do simple statistical analyses, perform com-
plex statistical computations involving matrix algebra and numerical optimization, and
make statistical computations more easily reproducible. We also investigate the numerical
and statistical reliability of various Perl statistical modules. Important computing issues
such as ease of use, speed of calculation, and efficient memory usage, are also considered.

Keywords: Perl, data processing, statistical computing, reproducibility.

1. Introduction

Statistics is often defined as the collection, presentation, characterization, analysis, and in-
terpretation of data. The large availability of powerful computers and sophisticated software
has meant that many of these activities are routinely solved by statisticians using powerful
statistical systems.

Statisticians use computers, not only for computations on data, but also for simple, mechan-
ical operations such as searching for information, collecting and storing data, changing the
format of data, validating data, post-processing output from statistical applications, writing
reports, collaborating with other researchers, and in disseminating the final results through

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6305029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 Using Perl for Statistics

the Internet. These operations typically require using a variety of data processing, communi-
cation, and other software tools.

In this paper, we demonstrate how Perl, a high-level programming language, provides a pow-
erful and flexible computing environment in which the statistician can integrate many of the
above mentioned activities. We will also show how Perl can facilitate the solution of practical
problems faced by the statistician, that are typically not addressed using computer programs,
and that often require considerable labor intensive and error prone manual intervention.

Perl, an acronym for Practical Extraction and Report Language,1 is a cross-platform, high-
level, open source programming language, originally designed and implemented by Larry
Wall.

Perl can be downloaded from the WWW’s Comprehensive Perl Archive Network (CPAN)
located at http://www.cpan.org/, where the source package, modules, documentation, and
links to binaries distributions of Perl are available for various platforms, including Win32,
Mac, and Unix/Linux.2 Perl is free, and is released under either the GNU GPL license or the
less restrictive Artistic License.3

The Perl language originally incorporated and extended some of the best features of the C
programming language, and from software tools such as sed, awk, grep, and the Unix shell.
Perl has considerably evolved since its beginning and now features a full range of network and
object-oriented capabilities.

The paper is organized as follows. In Section 2 we present the typographical and style con-
ventions used in this paper. The rest of the paper is organized into two parts. In Part I we
introduce Perl as a high-level language that can be used to process data for statistics and
can complement existing tools by functioning as a “glue” between different applications. This
part is organized as follows. Section 3 introduces the distinction between conventional pro-
gramming languages and scripting languages. An overview of the available documentation
and other useful resources on Perl is provided in Section 4. Section 5 introduces Perl’s basic
programming features with particular emphasis on the features that distinguish Perl from
conventional programming languages. Sections 7 demonstrates, with a practical example,
how Perl, viewed as a scripting language, can be used for data processing in statistics. Sec-
tion 8 introduces Perl’s object-oriented language features and demonstrates how Perl’s data
processing capabilities can be augmented through extension modules. Section 9 illustrates
how Perl modules can provide an intuitive interface to the WWW, making this expanding
environment readily accessible within statistical applications thus creating opportunities for
innovations in the way statistics is practiced and taught.

In Part II we illustrate how Perl can be extended to perform simple statistical analyses, nu-
merical linear algebraic computations, and efficient statistical computing. Part II is organized
as follows. In Section 11 we illustrate how Perl scripts can be used to collect commands that
can reproduce the computational results of a statistical project in its entirety. The next two
sections illustrate the methodology used to empirically assess the modules surveyed. Specifi-
cally, Section 12 reviews the methodology used to assess the numerical reliability of modules

1Though many Perl programmer like to think it stands for “Pathologically Eclectic Rubbish Lister.”
2We used ActivePerl release 5.8.0.806, which is based on Perl version 5.8, the standard Win32 release

available at the time of writing the present paper. The code has also being tested on platforms running the
Solaris and the Linux operating system. The hardware was a 600 MHz dual Pentium III with 256 MB of RAM
running on Windows NT.

3For details on the Perl license consult the GNU Project’s home page at http://www.gnu.org/.

http://www.cpan.org/
http://www.gnu.org/

Journal of Statistical Software 3

and Section 13 provides a quick overview on how speed benchmarking can be performed in
Perl. Several modules implementing basic statistical analyses, such as univariate descriptive
statistics, t tests, one-way analysis of variance, simple linear regression, and random number
generation are reviewed in Section 14. Modules useful for numerical linear algebra compu-
tations are introduced in Section 15. Section 16 provides an overview of PDL, a module
for efficient numerical computing in Perl. In this Section we illustrate how modules for lin-
ear algebraic computations that can be used for more sophisticated statistical computations.
Section 17 illustrates how other statistical and computing applications can be embedded in
Perl. Section 18 concludes.

2. Typographical and style conventions used

For the body of text the following typographical convention is used throughout this paper:

• an italic face is used for URLs, Newsgroups, journal titles, filenames, functions, for
emphasis, and to identify the first instance of a concept requiring definition,

• UPPER CASE letters are used to denote filehandles and delimiters in here documents
constructs,

• a fixed width font face is used for Perl syntax, code examples, and user input in
interactive examples,

• a slanted font face is used to typeset output from interactive examples and the listings
of files produced by executing Perl programs.

Perl is a free-form language, as opposed to older languages like FORTRAN or COBOL, that are
described as columnar. In a free-form language all white space, which includes spaces, tabs,
commented out text, and newlines, is insignificant except insofar as it separates words and
inside quoted strings, as in the string "median = 23 ". A judicious use of white space
can considerably improve code readability. Code is formatted according to the Perl style guide,
available from Perldoc.com Web site located at http://www.perldoc.com/. Also, besides font
shapes and capitalization, color is used to typeset the code examples in this paper. Color
has long been used in statistics to visualize data more effectively. Color can also play an
important role in the display of textual information, particularly as color printing devices are
becoming the norm and journals are increasingly available in electronic form. A uniformly
colored body of text is often hard to read and difficult to debug. Color can make language
constructs stand out, thus facilitating their recognition.4 The following color scheme was used
to typeset the code examples

• dark blue for language reserved words such as do and while,

• dark green for comments such as # prints variable name,
4Galton (1880) was the first to observe that a few gifted individuals are able to experience colors for letters

and digits. This perceptual phenomenon is known as colour-graphemic synaesthesia. The physicist Richard
Feynman was quoted saying: “When I see equations, I see the letters in colors – I don’t know why. As I’m
talking, I see vague pictures of Bessel functions from Jahnke and Emde’s book, with light-tan j’s, slightly violet-
bluish n’s, and dark brown x’s flying around. And I wonder what the hell it must look like to the students.”

http://www.perldoc.com/

4 Using Perl for Statistics

• dark cyan for numeric literals such as 3000 and -1.2e-6,

• purple for string literals such as "The sample t-statistic is", and

• normal black text for other special language symbols and user-defined identifiers.

Consider the following Perl script that: 1) downloads the Boston data from STATLIB, 2)
extracts and prepares the data, and finally 3) uses R to estimate the coefficients of a regression
model and to save the estimates in a file. The right panel presents the same code of the left
panel only colored applying the above-mentioned scheme. Note that, for example, the colored
right panel clearly shows that a string literal, the purple-colored multi-line string at the
bottom of the script, is used to store the R program.

downloads Boston dataset from STATLIB

use LWP::Simple;

getstore(

"http://lib.stat.cmu.edu/datasets/boston",

"boston.raw");

corrects for record spanning two lines

open(IN, "boston.raw");

open(OUT, ">boston.asc");

do { $line = <IN> } until $. == 22

or eof; # Skips the first 22 lines of header

while ($line = <IN>) {

chomp $line;

$line .= <IN>; # joins two lines

print OUT $line;

}

close(OUT);

sends data to R for regression analysis

open(RPROG,

"| c:/rw1081/bin/Rterm.exe --no-restore --no-save"

);

select(RPROG);

print <<’CODE’;

bost<-read.table("boston.asc",header=F)

names(bost)<- c("CRIM", "ZN", "INDUS",

"CHAS", "NOX", "RM",

"AGE", "DIS", "RAD",

"TAX", "PTRAT", "B",

"LSTAT", "MEDV")

attach(bost)

boston.fit <- lm(log(MEDV) ~ CRIM + ZN + INDUS +

CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) +

log(RAD) + TAX + PTRAT + B + log(LSTAT))

sum <- summary(boston.fit)$coe[,1:2]

write.table(sum,"boston.out",quote = FALSE)

q()

CODE

close(RPROG);

downloads Boston dataset from STATLIB

use LWP::Simple;

getstore(

"http://lib.stat.cmu.edu/datasets/boston",

"boston.raw");

corrects for record spanning two lines

open(IN, "boston.raw");

open(OUT, ">boston.asc");

do { $line = <IN> } until $. == 22

or eof; # Skips the first 22 lines of header

while ($line = <IN>) {

chomp $line;

$line .= <IN>; # joins two lines

print OUT $line;

}

close(OUT);

sends data to R for regression analysis

open(RPROG,

"| c:/rw1081/bin/Rterm.exe --no-restore --no-save"

);

select(RPROG);

print <<’CODE’;

bost<-read.table("boston.asc",header=F)

names(bost)<- c("CRIM", "ZN", "INDUS",

"CHAS", "NOX", "RM",

"AGE", "DIS", "RAD",

"TAX", "PTRAT", "B",

"LSTAT", "MEDV")

attach(bost)

boston.fit <- lm(log(MEDV) ~ CRIM + ZN + INDUS +

CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) +

log(RAD) + TAX + PTRAT + B + log(LSTAT))

sum <- summary(boston.fit)$coe[,1:2]

write.table(sum,"boston.out",quote = FALSE)

q()

CODE

close(RPROG);

5

Part I

Data Processing

3. Perl as a scripting language

High-level programming languages can be classified into conventional programming languages
and scripting languages. This distinction is not always clear and is not universally accepted,
but it is a useful one (see, e.g., Barron 2000).
Conventional (also system or application) programming languages are typically strongly
typed, i.e., have many data types and each variable can be of one type only, make provi-
sion for complex data structures, and their programs need to be compiled before they can be
executed. By contrast, scripting languages are weakly typed or untyped, make little or no
provision for complex data structures, and programs, referred to as scripts, are interpreted,
i.e., executed virtually instantaneously. Conventional programming languages are usually em-
ployed to develop large applications from scratch meant to work independently from other
applications, whereas scripting languages are mostly useful for small, “throw-away”programs,
and in connecting and managing other applications.
Scripting languages tend to specialize in performing tasks, such as text manipulation, the
creation of GUIs and interactive web pages. They are easier to use but tend to be less
efficient, both in terms of memory requirements and speed of execution.
In a study conducted by Prechelt (2000), seven languages, four scripting languages (Perl,
Python, Rexx, and Tcl), and three conventional system programming languages (C, C++,
Java), were compared with each other in terms of program length, programming effort, run-
time efficiency, memory consumption, and reliability. It was found that programs written in
conventional languages were typically two to three times longer than scripts, and that pro-
ductivity, in terms of line of code per hour, was half that of scripting languages. Programs
written in a conventional language (excluding Java) consumed about half the memory of a
typical script program, and run twice as fast. In terms of efficiency, Java was consistently
outperformed by scripting languages. Scripting languages were, on the whole, more reliable
than conventional languages. In interpreting these results it is important to bear in mind that
they depend critically on the experimental design. Another factor to consider is that com-
puter languages are not immutable entities, but are the subject of continuous improvements,
fixes, etc., and, now and then, undergo more drastic revisions.

4. Perl documentation and other resources

A plethora of information on Perl is available from CPAN and from the official Perl’s home
page at http://www.perl.com/, where documentation, tutorials, book reviews, and FAQ can
be consulted.
The Perl documentation included with the distribution can be accessed invoking the perldoc
command, which retrieves the documentation from the Perl POD (for plain old documenta-
tion) format that comes with the distribution. Table I lists the arguments on which the perldoc
command can be called and a short description of the documentation output. Documentation

http://www.perl.com/

6

Table I: Arguments and short description of the output of the perldoc command

Argument Short description of output

perl: Perl overview
perltoc: Perl documentation table of contents (this section)
perldata: Perl data structures
perlsyn: Perl syntax
perlop: Perl operators and precedence
perlre: Perl regular expressions
perlrun: Perl execution and options
perlfunc: Perl built-in functions
perlvar: Perl predefined variables
perlsub: Perl subroutines
perlmod: Perl modules
perlref: Perl references
perldsc: Perl data structures intro
perllol: Perl data structures: lists of lists
perlobj: Perl objects
perltie: Perl objects hidden behind simple variables
perlbot: Perl OO tricks and examples
perldebug: Perl debugging
perldiag: Perl diagnostic messages
perlform: Perl formats
perlipc: Perl inter-process communication
perlsec: Perl security
perltrap: Perl traps for the unwary
perlstyle: Perl style guide
perlxs: Perl XS application programming interface
perlxstut: Perl XS tutorial
perlguts: Perl internal functions for those doing extensions
perlcall: Perl calling conventions from C
perlembed: Perl how to embed perl in your C or C++ app
perlpod: Perl plain old documentation

7

on installed extension modules and Perl functions is also available through perldoc. Note that
to obtain help on a Perl function, the -f flag is required. For instance, to get help on the
string manipulation function join, we can execute

%perldoc -f join

join EXPR,LIST
Joins the separate strings of LIST into a single string with
fields separated by the value of EXPR, and returns that new
string. Example:

$rec = join(’:’, $login,$passwd,$uid,$gid,$gcos,$home,$shell);

Beware that unlike "split", "join" doesn’t take a pattern as its
first argument. Compare the split entry elsewhere in this
document.

There are several active Internet Newsgroups, such as comp.lang.perl,5 and an electronic
magazine, The Perl Journal, where information and support can be obtained. A complete
and updated repository of online Perl and CPAN module documentation is available at the
Perldoc.com Web site located at http://www.perldoc.com/. There are also dozens of Perl
books on the market. For general purposes, the most complete reference on Perl is the book
by Wall, Christiansen, and Orwant (2000). A simpler introduction to Perl is provided by
Schwartz and Phoenix (2001) or Sebesta (1999). A very useful reference guide is Christiansen
and Torkington (2003), which is a collection of Perl codes useful in solving a wide range of
problems. Basic algorithms implemented in Perl useful for statistics are discussed in Orwant,
Hietaniemi, and Macdonald (1999). Of particular interest to statisticians are the chapters on
matrices, probability, statistics, and numerical analysis.6 More specific references is provided
in subsequent sections.

5. Introduction to the Perl language

This section provides a succinct introduction to Perl’s basic language features. For space
reasons, several important topics are either left out completely or just briefly mentioned in
applied examples. Since, many of Perl’s language constructs such as logical operators, control
structures, and built-in functions, work exactly as their C and C++ homonymous constructs,
more emphasis is given to language features that distinguish Perl from more conventional
programming languages used by statisticians. For a more detailed introduction to the Perl
language, the sources suggested in the previous section should be consulted.

5.1. Basic data types

Perl has three built-in basic data types: scalars, arrays of scalars, and associative arrays of
scalars, known as hashes.

Scalars In a Perl program, numeric and textual information is stored in scalars. In Perl,
scalars can be numbers, strings, or references (references will be discussed in Section 5.6).

5For a complete list of Newsgroups and Mailing Lists consult http://www.cetus-links.org/oo_perl.html.
6The Perl code of the examples in the book can be downloaded from the Web page http://examples.

oreilly.com/maperl/.

http://www.perldoc.com/
http://www.cetus-links.org/oo_perl.html
http://examples.oreilly.com/maperl/
http://examples.oreilly.com/maperl/

8

Scalar literals are values determined “literally” by their denotation. A scalar variable is
denoted by a name and is associated with an address of a memory location where its value is
stored. The value of a scalar variable can be used by prefixing its name by the symbol $.
Example of acceptable Perl numeric literals include, -345, .0543, 10e-9 (scientific notation),
and 0x24E7C (hexadecimal). Standard computer arithmetic operators and mathematical func-
tions are predefined for numeric scalars. As an example consider the following numeric scalar
assignment operations:7

$beta_hat = 1.829151e+003; # scientific notation
$var = 273884.7556;
$std_err = sqrt($var); # computes standard error
$t_stat = $beta_hat / $std_err; # assigns 3.49514942484809 to $t_stat

Example of string literals include single quoted strings, such as, ’ROM’, and double quoted
strings, such as, "slope coefficient". Double quoted strings accept escape sequences of
special characters (such as tab, \t, or newline, \n), and interpolate “embedded” variable
strings, i.e., replace them with their stored value. The difference is illustrated in the following
string scalar assignment operations:

$str1 = ’Beta is:\t $beta_hat’; # assigns "Beta is:\t $beta_hat" to $str1
$str2 = "Beta is:\t $beta_hat"; # assigns "Beta is: 1829.151" to $str2

Several useful string operators, such as . (concatenation) and x (replication), in addition to
string functions, such as length, are predefined for string scalars.

Arrays In Perl, arrays are ordered lists of scalars indexed by an integer number, starting
with zero. A negative index specifies a position starting from the end of the array. Arrays in
Perl can have only one index. This means that to represent, say, a matrix, a more complex data
structure has to be used (see the discussion in the example on page 22, after the introduction
of references). Arrays (and “slices” of arrays) are prefixed by the symbol @. For example,
@oecd, is an example of array. An array can be initialized to the values of a list, a set of
comma separated values delimited by a pair of matching parentheses. As an example consider
the creation of an array of OECD member countries,

@oecd = (
"Australia", "Austria", "Belgium", "Canada",
"Czech Republic", "Denmark", "Finland", "France",
"Germany", "Greece", "Hungary", "Iceland",
"Ireland", "Italy", "Japan", "South Korea",
"Luxembourg", "Mexico", "Netherlands", "New Zealand",
"Norway", "Poland", "Portugal", "Slovakia",
"Spain", "Sweden", "Switzerland", "Turkey",
"United Kingdom", "United States"

);

Individual elements of an array can be accessed using the name of the array prefixed by a
$ symbol and followed by an integer, representing the index, enclosed in a pair of matching
square brackets. So, for example,

7Note that in Perl a statement must terminate with a semicolon and that lines can be commented out using
the symbol #.

9

$fourth = $oecd[3];

assigns Canada, the fourth element of the array @oecd, to the scalar $fourth and

$last = $oecd[-1];

assigns United States, the last element of the array, to the $last scalar. Note that scalar
values are always prefixed by the $ symbol, even when referring to a scalar that is part of an
array or a hash (see the next data type).
A list can also be used to withdraw elements from an array. For example, the statement

($first, $second, $third, $fourth) = @oecd;

assigns Australia to $first, Austria to $second, and so forth.
Special function such as pop, push, shift, and unshift, can be used to manipulate boundary
elements of an array. For example, the shift function removes the first element of an array,
as illustrated in the following example.

$first = shift @oecd; # assigns Australia to $first
$second = shift @oecd; # assigns Austria to $second

An example of using the push function to build an array of data, will be given in Section 7.1
on page 25.

Hashes An associative array can be thought as an array that instead of using a sequence
of integers as indices to its values, uses string values ordinarily referred to as keys. In Perl
associative arrays are known as hashes, as its elements are stored and accessed by means of
so called hash functions. A hash variable is prefixed by the % symbol and can be initialized,
similarly to arrays, with a list. The initializing list consists of a sequence of alternating values
of keys and their associated values. For example, we can create a dictionary that converts
country character codes into digit codes with the statement,8

%convert = ("AFG", "004", "ALB", "008", "DZA", "012");

or, with the semantically equivalent, but syntactically clearer statement,

%convert = ("AFG" => "004", "ALB" => "008", "DZA" => "012");

As an example, evaluating the expression $convert{AFG}, returns the three-digit code 004.9

Note that, as in the case of arrays, to access an individual elements, the % symbol is changed to
$. Like ordinary arrays, associative arrays do not need to be declared and are automatically
initialized at their first usage. Moreover, they do not have any prespecified order to their
elements but is it possible to access all the elements in turn using the keys function and the
values function. For instance, the statement,

8International Standard ISO 3166-1 codes for the representation of names of countries and their subdivisions,
available United Nations Statistics Division Web site.

9Note that in Perl a number with a leading 0 digit is a literal for a number expressed by octal notation.
Attempting to initialize the hash with the following statement,

%convert = ("AFG" => 004, "ALB" => 008, "DZA" => 012);

results in an error as (008)8 is not a legal number in base 8.

10

@c_codes = keys %convert;

stores the three-letter country codes contained in the hash in the array @c_codes.

5.2. Basic input/output

In this section we review some basic ways in which Perl can communicate with the “outside
world,” through peripherals and files.

Interactive i/o The print function prints a string or a comma-separated list of strings
to the screen (by default). Text enclosed in double quotation marks following the print
operator is printed literally with the exception of variable names which are replaced with the
value of the corresponding variables and standard “backslash escape code” sequences will be
interpreted in much the same way as in C or C++. As an example, consider the following
lines of Perl code,

$t_stat = 13.7;
print "The sample t-statistic is:\t$t_stat\n";

where, \n, represents the newline character and, \t, a tab. Executing the above statements
produces the following output:

The sample t-statistic is: 13.7

To print special characters like a literal backslash, underscore, or a double quote, these char-
acters need to be escaped, i.e., prefixed by the symbol \. If a filehandle (see next para-
graph) is specified after the print operator, the output is printed to the associated file (or
process). To get user input inside a Perl program, we can use a statement of the type
$user_input = <STDIN>, which assigns to the variable $user_input, the text typed by the
user (terminating with a “return”) on the keyboard.

File i/o Files can be accessed within a Perl program through filehandles. A filehandle is a
name given to a file for use inside a program, through an open statement. Typically, filehandle
names are written in uppercase letters, to differentiate them from other language elements.
For example, the statement

open(FILE, "filename");

ties the file filename to the filehandle FILE. To read a file the so called line input or angle
operator, <>, can be used. Evaluating a filehandle in angle brackets yields the “next line,”
including the terminating newline character, from the associated file. If the input line inside
the conditional expression of a while loop is not assigned to a scalar, as with the statement
$line = <FILE>, then it is automatically assigned to the special variable denoted $_. As long
as the loop does not reach the end-of-file (EOF) marker, the condition returns always true.
Often, the trailing newline character of the string is not needed an can be removed with the
string function chomp. See Section 7.1 on page 24, for an example. Using <> without any
argument, is equivalent to using <STDIN>, a predefined Perl filehandle that returns the lines
from a file specified on the command line, perl namefile.

11

Perl’s process manipulation capabilities allows to easily interact with other programs. The
open function can be used to create filehandles not only to access files for reading, but also
for various other purposes, such as creating new files, writing to files, and piping. Pipes allow
to get input from, and send output to files, the operating system, and other applications.
Because of this built-in functionality, Perl is also known as a “glue language.” The following
template statements, can be used to perform various input-output operations

open(FILE, ">filename"); # writes to filename
open(FILE, ">>filename"); # appends to existing file
open(FILE, "| command"); # sets up an output filter
open(FILE, "command |"); # sets up an input filter

Once created, the filehandle FILE can be used to access the associated file or process until it
is explicitly closed with a close statement.

Here document In order to conveniently input multi-line commands into another applica-
tion, the so-called here document notation for a multi-line string can be used. The notation
consists of the redirection symbol << and a string, typically in upper case letters, that serves
to delimit the lines of input.

The following example illustrates how the language features described in this section can be
used to interact with a statistical software application.

Interacting with R example Consider the problem of converting a file, in this example
the anscombe dataset (see Anscombe 1973), P025b.dta,10 from the stata format to the CSV
format (see Section 7.1 on page 24), using R’s foreign library,

open(RPROG, "| c:/rw1081/bin/Rterm.exe --no-restore --no-save")
; # creates the filehandle RPROG

$R_program = <<’R_CODE’;
library(foreign) # begining of R program
ans <- read.dta("c:/P025b.dta")
write.table(ans,"anscombe.csv",quote = FALSE,row.names=FALSE, sep = ",")
q() # end of R program
R_CODE
print RPROG $R_program;
close(RPROG);

Note that the delimiter indicating the beginning of the multi-line string is followed by a
semicolon and that no space precedes the delimiter indicating the end. The first five lines of
the anscombe.csv file contains:

y1,x1,y2,x2,y3,x3,y4,x4
8.03999996185303,10,9.14000034332275,10,7.46000003814697,10,6.57999992370605,8
6.94999980926514,8,8.14000034332275,8,6.76999998092651,8,5.76000022888184,8
7.57999992370605,13,8.73999977111816,13,12.7399997711182,13,7.71000003814697,8
8.8100004196167,9,8.77000045776367,9,7.1100001335144,9,8.84000015258789,8

10Available from the URL: http://www.ats.ucla.edu/stat/stata/examples/chp/chpstata_dl.htm.

http://www.ats.ucla.edu/stat/stata/examples/chp/chpstata_dl.htm

12

Note that in the conversion the non-integer values are slightly changed and appear with extra
spurious nonsignificant digits. A default filehandle can be selected with the select function.

The print function prints using a default format. To control the output format the printf
function can be used. The printf function follows the rules of the homonymous function
available in C or C++. See the next Section for an application of the printf function.

5.3. Program control statements

Perl provides a wide collection of program execution control statements. Most will work as the
homonymous statements available in C or C++. In this section, we will introduce conditional
expressions in Perl, and a few conditional and loop statements, that are specific to Perl.

Control expressions Most control statements have at their heart a control expression
whose evaluation will determine the flow of the program. A control expression must evaluate
to either true or false. In Perl, the number zero, as well as the empty string "" and anything
that evaluates to a string containing a single zero string, "0", is false. The value undef,
the special value given to a scalar by default if no other value is assigned to it, is also false.
Every other value is true. Typically control expression are constructed utilizing relational
operators such as == (equal), != (not equal), > (greater than), and >= (greater than or equal),
and Boolean operators like, && (AND) and || (OR). For example, using relational and Boolean
operators we can construct the compound expression

($rgdpch < 0 || $rgdpch > 100000)

which is true, if the value stored in the variable $rgdpch is strictly less then zero or strictly
greater than 100,000.

Conditional statements Conditional execution uses either the if statement or the unless
statement. An else statement following if, is optional. The if and else statements are
used as conditionals in C, C++, or Java. The unless statement is specific to Perl. It allows
the execution of a block of code only if the conditional expression is false. As an example,
consider the two-tail test decision implemented in Perl code:

$t_stat = 1.7;
$critical_value = 2.228;
unless ($t_stat > abs($critical_value)) {

print "The null can not be rejected\n";
}

The elsif is also specific to Perl. elsif simply combines an else and an if statements
together in one. As an example consider the following block of code.

$p_value = .5;
print "Strength of evidence coming from the data against the null:\n";
if ($p_value < .02) {

print "The data provides strong evidence against the null\n";
}
elsif ($p_value < .07) {

13

print "The data provides some evidence against the null\n";
}
elsif ($p_value < .20) {

print "The data provides little evidence against the null\n";
}
else {

print "The data provides no evidence against the null\n";
}

Note that, as with most programming languages, each condition is tested in the order in which
it appears in the script. If several conditions in the statement are simultaneously “true”, Perl
will execute the action associated with the first true condition encountered and ignore the
rest.

Perl does not have a built-in C-type switch statement. A switch-type multiple selection
construct can be simulated using the last operator (see Sebesta 1999, page 74). Another
option is to use the Switch module available from CPAN (see Section 8 on extending Perl
with modules).

Loops Perl provides the standard while and for loops. The while loop is typically used
to process all lines in a file. The for loop makes use of a loop variable, to allow the code
inside the loop block to be iterated, as the loop variable assumes the values in a sequence of
integers. These loop constructs work as their C/C++ equivalents. Perl provides a powerful
extension of the for loop, that is designed for iteration over lists and arrays: the foreach
loop control statement. foreach allows the extraction of elements out of an array or a list,
one at a time, without employing a loop variable.

Array printing example Often, we need to print the content of an array. The statement

print @oecd;

produces11

AustraliaAustriaBelgiumCanadaCzech RepublicDenmarkFinlandFranceGermanyGreece...

which is, obviously, difficult to interpret and use. The foreach loop can be used to extract
and print all the elements of the @oecd array. For example, executing the code

foreach $member_country (@oecd) {
print "$member_country \n";

}

prints

Australia
Austria
Belgium
Canada
Czech Republic

11The output is truncated for space reasons.

14

Denmark
Finland
France
Germany
Greece
...

The following example combines input-output language elements and iteration to format a
table of values.

Table formatting example Often regression output from a statistical program needs to
be processed in order to be included inside a document. Processing output from a statistical
package can become a repetitive, tedious, and error prone task. Consider the case of creating
a LATEX table from the following typical regression output in human readable format, that
has been saved in the file longley.reg12

X1 -52.99357014 129.54487 -.409 .6911

X2 .7107319907E-01 .30166400E-01 2.356 .0402

X3 -.4234658557 .41773654 -1.014 .3346

X4 -.5725686684 .27899087 -2.052 .0673

X5 -.4142035888 .32128496 -1.289 .2263

X6 48.41786562 17.689487 2.737 .0209

where the columns contain the variable names, the estimated coefficients, the standard errors,
the t-statistics, and the p-values respectively. In order to include these results in a LATEX
document as a table, we need to ensure that

• within the body of the table, the ampersand character, &, is used to separate columns
of text within each row, and the double backslash, \\, is used to separate the rows of
the table;

• figures are rounded to the desired number of decimal places, typically lower than the
number of digits provided by statistical and computing software to avoid “specious
accuracy.”

One way to print a number with the desired format is to pass it through Perl’s printf func-
tion.13 The arguments of the printf function are a format string and a list of values. The
format string consists of a string incorporating “place-holders,” beginning with a percentage
sign. The formatting convention used is inherited from the C function printf. The following
script, reads the longley.reg and outputs a LATEX-formatted table

open(TABLE, "longley.reg");
$prec = 3; # sets number of decimals
$width = 8; # sets the width of the field
while (<TABLE>) {

chomp;
@line = split;

12See Section 16.8 on page 62 in Part II.
13A more flexible approach is to use the Convert::SciEng module available from CPAN. Modules will be

introduced in Section 8.

15

printf "%2s", $line[0]; # prints variable name
for ($i = 1 ; $i <= $#line ; $i++) {

printf "& %${width}.${prec}f", $line[$i]; # prints all other fields
}
print "\\\\ \n"; # prints latex end-of-line carachter

}
close(TABLE);

The output of the script is:

X1& -52.994& 129.545& -0.409& 0.691\\
X2& 0.071& 0.030& 2.356& 0.040\\
X3& -0.423& 0.418& -1.014& 0.335\\
X4& -0.573& 0.279& -2.052& 0.067\\
X5& -0.414& 0.321& -1.289& 0.226\\
X6& 48.418& 17.689& 2.737& 0.021\\

5.4. User defined functions

Subroutines can be defined, anywhere in a Perl script, by typing the keyword sub, followed by
the subroutine name and a block with the body of code enclosed in matching curly brackets.
For instance, to define a function that calculates the sample mean, we can use the following
code,

sub mean {
@data = @_;
$sum = 0;
foreach $elem (@data) { $sum += $elem; }
return $sum / @data;

}

where the special array @_ makes the vector argument passed to the function available within
the function’s block of code. The argument of the function return specifies the value returned
by the subroutine. The mean function can then be invoked by its name and with an array as
argument,

@vect = (2.5, 3, 4.3, 5, 6.3); # defines a numerical array
print mean(@vect); # prints: 4.22

We will see in Section 5.6, on page 21, how routines can be made more efficient by allowing
arrays to be passed by reference.

5.5. Regular expressions

One of Perl’s most distinguishing language feature is its extensive built-in support for string-
pattern matching. A string that uses a special notation to describe a pattern to be matched
against another string is known as a regular expression. A large number of software tools in-
corporate regular expressions as a key part of their functionality. Unix-oriented command line
tools like grep, sed, and awk are specialized in regular expression processing. Unix-oriented
text editors, such as vi and emacs, allow search and/or replacement based on regular expres-
sions. Even operating systems like Windows support a restricted form of regular expressions

16

as “wild-card characters,” *, and, ?, useful for selecting sets of file names. Besides Perl, other
scripting languages such as Tcl and Python, have extended built-in support for regular ex-
pressions. Among the special-purpose languages used by statisticians, S-PLUS and R, support
standard (POSIX) regular expressions in a few of their functions. R supports Perl-compatible
regular expressions as well. Some applications of regular expressions include checking the
validity of input data, automatic editing of source code, and extracting data from program
output. In Perl there are two important string-pattern matching operators that make use of
regular expressions: the matching operator, m//, and the substitution operator, s///. Usually
a string matches itself so, for example, consider a string representing the result of tossing fifty
times a coin,

$seq = "HHTTHTHHTTTHHTTTTHHHHHHHHTTHHTTHHTHTHTHHHHTHHTTTHT";

By default, Perl matches the leftmost possible pattern. The following statement

if ($seq =~ m/HTTH/) { print "Pattern HTTH found!" }

matches the first occurrence of the pattern HTTH at trial number 2, and returns

Pattern HTTH found!

Note that,

• =~, is a string binding operator, which indicates that the pattern on the right-hand side,
will be matched against the string stored in the variable $seq on the left-hand side, and

• the expression $seq =~ m/HTTH/ evaluates to true if a match occurs.

If no string is specified via the =~ operator, the special, $_, string is searched.

Beside characters that match themselves, there are also special characters known as metachar-
acters, that match other characters. For instance, . (matches any character), ? (matches
zero or one of the previous character), * (matches zero or more of the previous character),
+ (matches one or more of the previous character). These metacharacters are collectively
known as quantifiers. Other quantifiers are, for instance, {n} (match exactly n times), {n,m}
(match a minimum of n times and a maximum of m times), and {n,} (match a minimum of
n times or more). For instance the following expression

$seq =~ m/H{3}/;

matches the occurrence of the first H triplet. Perl also provides the positions of what was last
matched through the special @- and @+ arrays. In particular, the first element of @-, $-[0],
stores the position of the start of the entire match and the first element of @+, $+[0], stores
the position of the end. For instance,

printf "First head run occurs at trial: %d\n", $-[0] + 1;

returns

First head run occurs at trial: 18

17

One or more single letter can be placed after the final delimiter to change the behaviour of
the matching or substitution operator. For instance, /i, makes the match insensitive to case,
/g, finds all possible matches within a string, etc. Continuing our sequence example, using
the the /g matching modifier, it is possible to match all the head runs of length three in the
sequence.14

$runs = 0; # initializes runs count variable
print "Runs occur at trials number: ";
while ($seq =~ m/H{3}/g) {

$runs++; # increment runs count
$trial = $-[0] + 1; # stores start of run
print "$trial, ";

}
printf "\nNumber of runs: %d\n", $runs;

returns

Runs occur at trials number: 18, 21, 39,
Number of runs: 3

The results show that the sequence contains three runs of length three, occurring at trials 18,
21, and 39. The metacharacter | allows to choose among alternatives. For instance,

$seq =~ m/(HTTTH|THHHT)/;

matches the first occurrence of either HTTTH or THHHT. Parentheses, used to group parts of a
pattern, capture what they group to a special variable. Each set of parentheses has a number
associated with it. The first pair of parentheses assigns its substring to the special variable
$1, the second to $2, and so on. Therefore, the code

print "Sequence matched: $1\n";
printf "Starting at trial: %d\n", $-[0] + 1;

prints

Sequence matched: HTTTH
Starting at trial: 8

A string of characters enclosed in matching square brackets is called a character class and
matches any one of the characters in the string. For instance, the regular expression [123456789]
matches any non-zero digit. The notation can be shortened using a hyphen, -, to indicate a
range, as in [1-9]. If the first character in the list is the caret, ^, then the regular expression
matches any character not in the list. Many character classes have a special metasymbol to
denote them. For instance, metasymbols such as \s (whitespace),15 \S (non-whitespace), \d
(digit), \D (any non digit), \w (word character), \W (non-word character), etc. Anchors are
special metasymbols that match positions rather then characters. For instance, ^ (matches
at the beginning of a string), For instance, $ (matches at the end of a string), \b (matches
at any position that is a word boundary), \B (matches at any position that is not a word
boundary).

14The counting of consecutive head runs is restarted when the desired value 3 is reached according to the
definition given by Feller (1968, page 305).

15Defined as the character class [\t\n\r\f].

18

Benford’s law example Let us verify if the GDP data, that we will introduce in Section 7.1
on page 24 together with how to read data in Perl, follows Benford’s first digit law (see, e.g,
Hill 1996).

open(IN, "f:/web/statmeth/pwt6_year.csv");
do { <IN> } until $. == 4 or eof; # Skips the top 4 lines header of the file
while (<IN>) {

$rgdpch = (split(/,/))[12]; # extracts real GDP from 13th column
$nonzero_digit = ’[1-9]’; # defines a "nonzero digit" pattern
if ($rgdpch =~ /($nonzero_digit)/) { # matches and captures digit

$count[$1]++; # counts and stores the occurrences of each digit
$total++; # counts and stores the number of observations

}
}

To print the results with the expected frequency, given by logarithmic distribution

f(x) = log10

(
1 +

1
x

)
,

we can use the following code:16

print "Digit Count Obs. freq. Exp. freq.\n";
foreach $digit (1 .. 9) {

printf(
"%5d %5d %10.4f %10.4f\n",
$digit, $count[$digit],
$count[$digit] / $total, # computes observed frequencies
log(1 + 1 / $digit) / log(10) # computes the expected frequencies
);

}

When executed the code produces the following output.

Digit Count Observed Expected
1 1841 0.3348 0.3010
2 956 0.1738 0.1761
3 591 0.1075 0.1249
4 435 0.0791 0.0969
5 399 0.0726 0.0792
6 346 0.0629 0.0669
7 312 0.0567 0.0580
8 314 0.0571 0.0512
9 305 0.0555 0.0458

Typesetting example A typical TEX typesetting problem affecting documents that make
use of many acronyms (like this paper) is to put the correct amount of space after a sentence-
ending period (see Knuth 1984, page 74). Usually TEX puts the correct amount of space,
larger than intra-sentence spaces, after a period. There are a few special cases in which TEX

16Note that since Perl’s log function returns the natural logarithm of its input, in this example, to convert
to logarithms with base 10, we used the base conversion formula, log10(x) = loge(x)

loge(10)
.

19

makes an incorrect decision. For example, TEX assumes that a period following an upper case
letter represents someone’s initial and does not recognize it as a period ending a sentence.
This assumption can lead to typesetting errors. Consider the case where a sentence ends with
an acronym. In such cases, TEX will put an insufficient amount of space after the period.
One way to correct this problem is to type \@. after an acronym that ends a sentence. The
following script looks for at least two consecutive uppercase letters followed by a period and
by one or more spaces. The regular expression ([A-Z]{2,}\.\s+) assigns the desired match
to the variable $1.

while ($line = <>) {
if ($line =~ /([A-Z]{2,})\.\s+/) {

print "$1 - at line number: $.\n";
}

}

The special variable $. contains the line number where the match occurred. Another use of
this variable will be shown in Section 7.1 on page 25. When applied to the TEX file of this
paper (before adding this section!), it generated the following output.

WWW - at line number: 283
FILE - at line number: 1041
CPAN - at line number: 1215
CPAN - at line number: 1450
II - at line number: 2014
ID - at line number: 2157
ID - at line number: 2791
HTTP - at line number: 3461
LWP - at line number: 3545
LRE - at line number: 4536
LRE - at line number: 4587
RNG - at line number: 5226
RANDLIB - at line number: 5485
IDL - at line number: 5776
PGPLOT - at line number: 5827
WARRANTY - at line number: 5868
NIST - at line number: 6269
PDL - at line number: 6297

Split and Grep Regular expressions are also used by Perl’s built-in operators split and grep.
The split operator accepts a pattern and a string as arguments and returns list of substrings,
by finding delimiters that match the pattern. The split function will be discussed in more
details in Section 7.1. The grep operator which accepts a pattern and an array as arguments
and returns a list that contains all the elements of the argument array that match (or do not
match, if the negation operator, !, is used). Consider printing the mean of the array @lgdp,17

using the previously defined function mean, excluding missing values, represented by the NA
string,

print mean(grep !/NA/, @lgdp);

17This array will be defined in Section 7.2 on page 28.

20

For more information on regular expressions consult the excellent perlre manpage, Wall et al.
(2000) and Friedl (2002). Very useful tools to rapidly gain confidence and insight in how to
use effectively regular expression are tools that visualize regular expression matches. One
of such tools is Visual REGEXP.18 To visualize a regular expression, we can type it in the
expression text area at the top of the window. After pressing the ‘Go’ button, the matches in
the sample text at the bottom of the window, are highlighted. Figure 1 illustrates the result
of such an action.

Figure 1: Visual REGEXP window

Different colors are used to show different matching groups. For more detail consult the
accompanying documentation.

5.6. References

A reference is a scalar whose value is the memory location of another variable, which can be of
any of the basic types. References are essential in making efficient use of computer resources.
For instance, passing an array to a subroutine will cause a copy of the array to be made,
which can result in excessive pressure on memory and processing units resources. By passing
a reference to an array to a subroutine, no new copy of the array will be made. References
are also needed to create complex data structures from simpler ones. For example, as we
mentioned earlier, arrays can have only one index, and are therefore not suitable, as such,

18The version used here is the stand-alone Win32 Visual REGEXP 3.0, obtained from http://laurent.

riesterer.free.fr/regexp/. For other platforms a script requiring Tcl/Tk 8.3.0 (or later) is available.

http://laurent.riesterer.free.fr/regexp/
http://laurent.riesterer.free.fr/regexp/

21

to represent matrices. We will see how references allow arrays to contain matrices. In Perl
there are two fundamental reference operations, assignment and dereferencing. The reference
assignment operation, sets a reference variable to a useful memory address. References are
created by prefixing a variable with the symbol \. For example, given a scalar, say $sca=47,
\$sca is a reference to $sca which can be assigned to a scalar variable with the following
statement

$ref_to_sca = \$sca;

now $ref_to_sca is a reference to the scalar 47. Note that, in this example,

print $ref_to_sca;

prints the hexadecimal representation of the array’s memory address, SCALAR(0x1bd28a4).

The dereferencing operation allows access to the value of the variable referred to. Derefer-
encing is done by prefixing the reference with the data type symbol associated with the value
referenced. For example, since $ref_to_sca is a reference to a scalar variable, to access its
value, we need to prefix the reference by the symbol $. The statement

print $$ref_to_sca; # prints: 47

References to arrays and hashes can also be created. Consider initializing an array and
assigning a reference to it to a scalar,

@data = (5, 10, 15, 20);
$ref_to_dat = \@data;

The arrow operator ->, when used between a reference to an array and an array index, provides
access to array elements. In our example, print $ref_to_dat->[2] prints the third element
of the array. To retrieve the array value $ref_to_dat refers to we can use the expression:
@$ref_to_dat.

Passing by reference example Let’s reconsider the mean subroutine defined in Sec-
tion 5.4 on page 15. The function, needs just a few small modifications to handle references
to arrays instead of arrays.

sub mean {
($dataref) = @_;
$sum = 0;
foreach $elem (@$dataref) { $sum += $elem; }
return $sum / @$dataref;

}

Now it can be called passing a reference to an array as argument as in the statement

mean($ref_to_dat)

An example of how references can be used to pass functions to subroutines will be given in
section 16.9 in part II.

22

Matrix data structure example Consider defining a data structure for matrices. An
n×m matrix can be implemented as an anonymous list of n, length m, anonymous lists. For
example, a 2× 3 matrix can be defined with

$mat = [[1, 2, 3], [3, 4, 5]];

The statement $mat->[1][0] accesses the matrix element at the intersection of the second
row and first column.

A way to conveniently print complex data structures will be discussed in Section 8 on page
31.

6. Running Perl programs

There are several ways in which Perl programs may be run. Depending on the operating
system, Perl scripts can be run by clicking a file icon, calling an executable file, or by invoking
the perl interpreter at the operating system command prompt. The latter mode is more
likely to work on most systems. For instance, to run a list of valid Perl statements included
in a script named pwt.pl, we can type the command

> perl pwt.pl

It is possible to invoke the perl interpreter with a one-line program using the flag -e. As an
example, consider a simple calculation

> perl -e ’print -52.99/129.54’

-0.409062837733519

Note that some environments require double, instead of single quotes, to delimit the Perl
statement after the flag. To process more than one line, the -n flag may be used. Flags can
be combined as the following example illustrates. Consider the following regression output
from a statistical package, saved in a file named longley.out

+---+

| Ordinary least squares regression Weighting variable = none |

| Dep. var. = TOTEMP Mean= 65317.00000 , S.D.= 3511.968356 |

| Model size: Observations = 16, Parameters = 6, Deg.Fr.= 10 |

| Residuals: Sum of squares= 2257822.600 , Std.Dev.= 475.16551 |

| Fit: R-squared= .987796, Adjusted R-squared = .98169 |

| Model test: F[5, 10] = 161.88, Prob value = .00000 |

| Diagnostic: Log-L = -117.5616, Restricted(b=0) Log-L = -152.8096 |

| LogAmemiyaPrCrt.= 12.646, Akaike Info. Crt.= 15.445 |

| Autocorrel: Durbin-Watson Statistic = 1.27749, Rho = .36125 |

+---+

+---------+--------------+----------------+--------+---------+----------+

|Variable | Coefficient | Standard Error |t-ratio |P[|T|>t] | Mean of X|

+---------+--------------+----------------+--------+---------+----------+

X1 -52.99357014 129.54487 -.409 .6911 101.68125

X2 .7107319907E-01 .30166400E-01 2.356 .0402 387698.44

X3 -.4234658557 .41773654 -1.014 .3346 3193.3125

X4 -.5725686684 .27899087 -2.052 .0673 2606.6875

X5 -.4142035888 .32128496 -1.289 .2263 117424.00

X6 48.41786562 17.689487 2.737 .0209 1954.5000

23

To extract only those records that have 6 fields, we can type

> perl -ne ’print if split==6’ longley.out

X1 -52.99357014 129.54487 -.409 .6911 101.68125
X2 .7107319907E-01 .30166400E-01 2.356 .0402 387698.44
X3 -.4234658557 .41773654 -1.014 .3346 3193.3125
X4 -.5725686684 .27899087 -2.052 .0673 2606.6875
X5 -.4142035888 .32128496 -1.289 .2263 117424.00
X6 48.41786562 17.689487 2.737 .0209 1954.5000

To print only the results for which the t-statistic, the fourth field in the record, is greater
than two in absolute value19

> perl -ne ’print if abs((split)[3])>2’ longley.out

X2 .7107319907E-01 .30166400E-01 2.356 .0402 387698.44
X4 -.5725686684 .27899087 -2.052 .0673 2606.6875
X6 48.41786562 17.689487 2.737 .0209 1954.5000

Though a simple text editor that can create ASCII text files, and a command-line to execute
Perl programs are enough to write, run, and maintain small Perl programs, several tools that
can facilitate programming are available. More complex programs are typically developed
using an Integrated Development Environment (IDE). An IDE provides a GUI-oriented inter-
face for managing the steps required to craft and run a computer program (edit, color syntax,
execution, profiling, debugging, etc.).

The Emacs multi-platform programmable editor,20 achieves the functionality of an IDE by
providing a Perl programming mode that determines how Perl code is displayed, checks the
syntax, automates indentation, defines shorthand keystrokes, menus, etc. This mode is “en-
tered” by default when a file terminating with a recognized Perl extension (such as .pm or
.pl) is accessed or when a file with that extension is saved. There is an advanced Perl mode,
the cperl mode,21 that can be invoked with the keystroke sequence ALT x cperl-mode.22 A
Perl program can be executed by selecting, using the mouse, the Tools title from the menu
bar, and then the Compile item from the Tools’s drop-down menu.

Another, easier to use, tool that provides IDE functionality is SciTE.23 SciTE is free and can
be used with dozens of useful computer languages, including LATEX, C/C++, FORTRAN, and
MATLAB. Within the IDE provided by SciTE, a Perl program can be executed by selecting,
using the mouse, the Tools title from the menu bar, and then Go from the Tools’s drop-down
menu. Other Perl debugging tools can be analogously accessed. Figure 2 displays an example
of SciTE window.

19Obviously, in general, this statement may print other lines in which there happens to be a number that
satisfies the condition.

20Emacs can be obtained through http://www.gnu.org/software/emacs/emacs.html.
21If not already included in the Emacs distribution, the Lisp file that implements the mode can be downloaded

from http://www.cpan.org/modules/by-module/Softref/ILYAZ/cperl-mode/.
22It is more convenient to change the default Perl mode in Emacs by adding a line such as (add-to-

list ’auto-mode-alist ’("\\.\\([pP][Llm]\\|al\\)\\’" . cperl-mode)) to the .emacs configuration file.
23The version used here is the stand-alone Win32 Release version 1.58, available from http://www.

scintilla.org. SciTE is also available for Linux and Unix systems.

http://www.gnu.org/software/emacs/emacs.html
http://www.cpan.org/modules/by-module/Softref/ILYAZ/cperl-mode/
http://www.scintilla.org
http://www.scintilla.org

24

Figure 2: SciTE window

7. Data processing with Perl

Preparing a dataset for analysis by a statistical program typically involves several steps.
Some of these steps might be considerably labor intensive and might involve direct “manual”
intervention. In this section we will illustrate how Perl can be used to considerably simplify
and automate many data processing tasks. By minimizing the amount on “manual” editing of
large data files, using Perl can considerably reduce the chance of errors such as transcription
and transposition errors.

In the next sections we will illustrate how a longitudinal dataset can be processed using Perl’s
capability of manipulating text by pattern matching through hashing and regular expressions.

7.1. Reading data

Even though Perl can easily deal with data in binary format, all the subsequent examples
presuppose the use of textual (ASCII) data. Textual data files can be readily transferred from
one system to another,24 can be read by any program, and are mostly self-documenting. By
contrast, binary files, though more compact in size, need specialized (and often proprietary)
software to be processed, cannot be easily ported between platforms, are not human readable,
and require considerable accompanying documentation (often not available).

Suppose we want to read and process the recently released version 6.1 of the well known Penn
World Table25 (PWT), which provides national income accounts converted to international

24There is a source of constant irritation when transferring text files between MSDOS/Win32 and Unix
platforms. MSDOS/Win32 use a carriage return (CR, ASCII 13) followed by a line feed (LF, ASCII 10) to end
a line, whereas Unix flavors use only an LF as line terminator (Macintosh uses a CR). The result of this different
standards is that MSDOS and Win32 regard a file created on a Unix system as being one long line, often
too long to be read by regular word processors, whereas an MSDOS/Win32 text file, when viewed on a Unix
system, will display the symbol ^M at the end of each line. That is also why text files have a on MSDOS/Win32
and Unix platforms (1 byte per line, except for the last, shorter in Unix).

25Alan Heston, Robert Summers and Bettina Aten, Penn World Table Version 6.1, Center for International
Comparisons at the University of Pennsylvania (CICUP), October 2002. The dataset can be found at the Web

25

prices for 168 countries for the period 1950–2000. The file is available in the CSV (for comma-
separated variable) format, an extremely popular computer file format, that may come from
spreadsheets, statistical software, databases, and various other sources. Here we show the
first 6 (out of 10,209) records of the file named pwt61.csv (note that the first record has been
split into two lines for space reasons):26

isocode,XRAT,POP,cc,cg,ci,kc,kg,ki,openc,openk,csave,

rgdpch,rgdpl,cgdp,rgdptt,y,p,pc,pg,pi,yr,cgnp,rgdpeqa,rgdpwok

ABW,,,,,,,,,,,,,,,,,,,,,1960,,,

ABW,,,,,,,,,,,,,,,,,,,,,1961,,,

ABW,,,,,,,,,,,,,,,,,,,,,1962,,,

ABW,,,,,,,,,,,,,,,,,,,,,1963,,,

ABW,,,,,,,,,,,,,,,,,,,,,1964,,,

The first line contain the file header. The actual data is contained in the lines that follow
the header. The simplest way to process a comma-separated line is by using the Perl split
operator, which takes the separator, like a comma /,/ or a space, /s/, and the string to
process (the special variable $_ if this is omitted), as arguments. A more robust method to
process CSV files will be discussed in Section 8 on page 31. Say we are also interested in
extracting three variables (to be used in later examples), the country code (isocode), the
year (yr), and the real GDP per capita (rgdpch), from the PWT data file. The variables
can be read, stored into arrays using the push operator, and then printed, using the following
script:

open(IN, "pwt61.csv");
do { $line = <IN> } until $. == 1 or eof; # Skips the first line
while ($line = <IN>) {

chomp $line;
(

$isocode, $XRAT, $POP, $cc, $cg, $ci, $kc,
$kg, $ki, $openc, $openk, $csave, $rgdpch, $rgdpl,
$cgdp, $rgdptt, $y, $p, $pc, $pg, $pi,
$yr, $cgnp, $rgdpeqa, $rgdpwok

)
= split (/,/, $line);

push (@code, $isocode);
push (@year, $yr);
push (@rgdpch, $rgdpch);

}
for ($rec = 0 ; $rec < 10208 ; $rec++) {

print "$code[$rec], $year[$rec], $rgdpch[$rec]\n";
}
close(IN);

Say we named the script readPWT.pl, to run it and save (redirect) the output in file named
output.file, one use the command perl readPWT.pl > output.file, at the operating system
command prompt. The first ten lines of output.file contain:

address: http://pwt.econ.upenn.edu/.
26Perl can easily process more complex data formats, with records that span over many lines.

http://pwt.econ.upenn.edu/

26

ABW, 1960,
ABW, 1961,
ABW, 1962,
ABW, 1963,
ABW, 1964,
ABW, 1965,
ABW, 1966,
ABW, 1967,
ABW, 1968,
ABW, 1969,

7.2. Examples of recoding, validating, and transforming variables

Preparing a dataset most often consists of merging, i.e., combining, several data files from
different sources into one, and of putting the data into the correct format required by a
specific statistical software for analysis. The preparation of datasets might require several,
often labor intensive, steps. Perl can be used to considerably simplify and automate these
processes. Also, by minimizing the amount of “manual” editing of large data files, using Perl
can considerably reduce the chance of errors.

Consider the longitudinal dataset example of Section 7.1. Several issues require particular
care in practice. For instance, often packages require missing values to be coded in specific
ways before they can be correctly processed. Also, to analyze longitudinal data, programs
often require two identifying variables, usually a time series index and a unit index, like
a household ID or a country name, of a specific type and with a particular range. Most
statistical packages require the unit index to be of numeric type, with an arbitrary range and
order; some packages require the time index to be a sequence starting with 1.

The following sections provide several examples on how features like pattern matching and
hashes can be used to address the above mentioned problems, and other problems that could
arise in practice, like the creation of dummy variables, and the validation and transformation
of data. Several important built-in Perl functions and operator will also be introduced in the
examples.

Example of recoding missing values The CSV file format is particularly suited to rep-
resent missing values, as they appear as empty (or null) strings delimited by commas. Most
statistical packages will not accept a null string (henceforth represented by "") to denote a
missing value. Different packages use different symbols to denote missing values: some use
punctuation marks, like a period, some numbers, like −999, and others strings, like NA. Perl
can easily recode missing values. Consider, for example, replacing a null string "" with a NA
string. In Perl this task can be accomplished by including the following statement after the
split function:

if ($rgdpch == "") { $rgdpch = "NA"; }

Example of recoding numerical variables Some statistical packages require the time
index variable to be a sequence of integers starting with 1. We can recode the year variable
in Perl, for example, by subtracting from it the starting year value minus one. This can be

27

accomplished simply with the following expression: $year -= 1949. The -= operator, analo-
gously to C and C++, is simply a shorthand for the assignment operator used in conjunction
with the minus operator to avoid typing the variable name twice. We can also“multiply”with
the repetition operator, x, a sequence going from 1 to 49 obtained using the range operator,
.., with the expression27

@trend = (1..49) x 168;

Note that a vector of ones can be obtained in a similar way simply with the statement,

@ones = (1) x 8232;

Example of recoding categorical variables Using regular expressions and hashes we
can show how a laborious and error prone task, like converting a categorical variable into a
numerical variable, can be automated with Perl. Consider converting the three-letters country
code of our example into a three-digits one by using a “dictionary” created from a suitable
file. Consider the file containing a list of countries and their associated three-digit numerical
codes used for statistical processing purposes by the Statistics Division of the United Nations
Secretariat, and three-letter alphabetical codes assigned by the International Organization
for Standardization, available from the United Nations Statistics Division Web site.28 Here
follow the first ten lines

Numerical

code Country or area name ISO ALPHA-3 code

004 Afghanistan AFG

008 Albania ALB

012 Algeria DZA

016 American Samoa ASM

020 Andorra AND

024 Angola AGO

660 Anguilla AIA

028 Antigua and Barbuda ATG

We can immediately observe that the split operator with separator /\s/, would not be useful
here as it would break up names like “American Samoa.” A regular expression can be used to
extract the information required from the file. We can use the expression (\d{3}) to define a
pattern that matches three consecutive digits, and assigns the match to the variable $1. The
expression ([A-Z]{3}) defines a pattern that can be used to capture three adjacent capital
letters into the $3 variable. The country names, not needed in our example, can be captured
into the variable $2 with the pattern (\D+). Combining, these pattern into one expression
we can build a dictionary that will do the desired conversion, in this case, from a letter code
to a digit code, suitable for merging files and for longitudinal data analysis,

27It is considered poor programming practice to have what programmers call “magic numbers” interspersed in
the code. In statistical programs this numbers are typically the number of observations, years, and individuals.
To improve code readability and to facilitate code reusability, these should be assigned to names of their own
like $nobs, $ncontries, and $nyears, respectively. In Perl the length of an array can be obtained evaluating
the array in a “scalar context”, for example, the length of the GDP array can be obtained using the expression
$nobs = @rgdpch.

28The Web address of the site is: http://unstats.un.org/unsd/methods/m49/m49alpha.htm.

http://unstats.un.org/unsd/methods/m49/m49alpha.htm

28

open(IN, "iso.out");
while ($line = <IN>) {

chomp($line);
$line =~ /(\d{3})\s(\D+)\s([A-Z]{3})/;
$convert{$3} = $1;

}
close(IN);

the dictionary can be used, after reading the longitudinal data file, with the expression

$NEWCODE = $convert{$CODE};

Another example, where recoding a categorical variable into a numeric variable might be
needed, is in the creation of dummy variables. Consider creating a dummy variable that is
equal to 1 if a country is an OECD member, and 0 otherwise. The following Perl code defines
a function called isOECD that can accomplish the task.

sub isOECD {
@oecd = (aut, bel, cze, dnk, fin, fra, deu, grc, hun, isl,

irl, ita, lux, nld, nor, pol, prt, esp, svk, swe,
swz, tur, gbr, aus, jpn, nzl, can, mex, usa, prk

);
my ($country) = shift;
%OECD = map { $_ => 1 } @oecd;
if (exists $OECD{ lc($country) }) {

return $OECD{ lc($country) };
}
else {

return 0;
}

}

For example, evaluating the statement isOECD(ITA) returns 1, whereas evaluating isOECD(ALG)
returns 0. To create an array containing the dummy variable, we can use,

@OECD = map { isOECD($_) } @code;

We can also substitute the variable isocode “in place,” i.e., without making a new copy of
the data for output, with the expression,

$line =~ s/([A-Z]{3})/isOECD($1)/e;

where the /e modifier causes the replacement string to be evaluated as Perl code.

Example of transforming variables To transform a variable one can use the map oper-
ator which applies a specified function to each element of a list. Say we want to apply the
usual log transformation to a variable. Once missing values have been purged, this can be
done in with the following Perl statement:

@lgdp = map { log($_) } @rgdpch;

29

To apply the log transformation only to values in its domain of definition, i.e. when the ar-
gument is greater then zero, we can use the conditional or ternary operator (because it takes
three arguments), combined with the map operator. The ternary operator first evaluates its
first argument, a conditional expression. If the argument evaluates to a true value, then the op-
erator returns the second argument. Otherwise it evaluates and returns the value of the third
argument. We want to take the log of the value only when positive otherwise we want to assign
a missing value symbol, say “NA”, to the variable, i.e., $rgdpch>0 ? log($rgdpch) : "NA".
Combined with map the code becomes:

@lgdp = map { $_ > 0 ? log($_) : "NA" } @rgdpch;

Example of validating data Data can easily be validated using logical operators. These
follow the same rules as C, C++, etc.

if ($rgdpch < 0 || $rgdpch > 100000) { print "GDP out of range" }

7.3. Sorting observations

When processing data, sorting is an important prerequisite for merging data files. Also, it
might be required in order to prepare a data file to be fed into a statistical package. For
instance, for longitudinal data analysis, all the years should be in chronological order.

In Perl the sort operator returns a copy of the array argument, sorted in ascending alphabetic
order. Here are some common ways to sort in Perl:

(sort {$a cmp $b} @array) # sort alphabetically, with uppercase first
(sort {$a <=> $b} @array) # sort numerically
(sort {$b cmp $a} @array) # sort reverse alphabetically

The sort operator above passes a “comparison” anonymous function {...} to the sort opera-
tor, where the special variables $a and $b are the two elements to compare, cmp is the built-in
string comparisons operator, and, <=>, is the built-in numerical comparison (“spaceship”)
operator.

For example, if we want to sort our observations using the year as the first sorting key and
the country code as the second, we can combine the numerical and alphabetical comparisons
and then print the sorted observations with the following lines of code

@index =
sort { $year[$a] <=> $year[$b] or $code[$a] cmp $code[$b] } 0 .. $#year;

foreach $ind (@index) { print "$code[$ind], $year[$ind], $rgdpch[$ind]\n"; }

The first ten lines of output contain:

AGO, 1950,
ALB, 1950,
ARG, 1950, 6430.0134743
ARM, 1950,
ATG, 1950,
AUS, 1950, 9173.8190347

30

AUT, 1950, 4213.7210261
AZE, 1950,
BDI, 1950,
BEL, 1950, 6099.8246926

8. Enhancing Perl with modules

A Perl module is a plain text file, ending with the .pm suffix, that contains reusable Perl code.
The use statement makes the code in the module file available to the rest of the Perl script.
Modules greatly extend Perl’s functionality in several application areas. Many modules are
already included in standard Perl distributions. Installing modules is very simple as most Perl
distribution provide module managers that directly access the CPAN module repository,29

and automatically install the required modules.

Interface The way modules can be used depends upon what is known as their interface.
There are two important interfaces: functional and object-oriented.

Modules with functional interface export functions they provide making them accessible just
as any other Perl or user defined function. Consider the module Locale::Country for ISO
codes for country identification. The module provides, amongst other, a function, coun-
try2code, that converts a country name into its 3 characters or its digits ISO code, depending
on the arguments,

use Locale::Country;
$codealph = country2code(’United states of america’, LOCALE_CODE_ALPHA_3);
$codenum = country2code(’United states’, LOCALE_CODE_NUMERIC);

$codealph is now“usa”and $codenum, 840. Note that Locale::Country supports alternative
names for countries.

Modules, with interfaces known as object-oriented, provide methods. Methods, as functions,
have a name and take a number of argument. From a user’s point of view, methods differ
from functions in the way they are invoked. Implementation and interface are kept well
distinct in object oriented programming. Users of modules do not need to know how they are
implemented. Statisticians familiar with the S language (and its implementations) should not
be new to the concept of object oriented programming. Extensive documentation on how to
use hundreds of modules is available at the Perldoc.com Web site.

Consider the module Number::Format which allows the formatting of numbers in a more
flexible fashion than can be done with standard Perl functions. The module can be loaded
with

use Number::Format;

The method new in the expression
29With ActivePerl, the Perl Package Manager (PPM) is loaded by executing the ppm command at the

operating system prompt. The PPM is a tool that manages the installation install, removal, and the upgrade,
of common Perl CPAN modules. For example, to install the Locale::Country module, one can just execute
the command install Locale::Country.

31

$gdp = Number::Format->new(%options);

creates an object belonging the class Number::Format. Key/value pair arguments (%options)
may be provided to set up the desired number format. The following script

$number = 23435464.5433577;
use Number::Format;
$numeraire = Number::Format->new(

-thousands_sep => ’,’,
-decimal_point => ’.’,
-int_curr_symbol => ’USD’

);
$formatted = $numeraire->format_price($number);
print $formatted;

prints USD 23,435,464.5434. A method expects an object reference as its first argument.
Note that both new and format price are methods of the “class” Number::Format, only that
new, the so-called constructor method, has the class name as the extra first parameter,
whereas the format price method takes an object belonging to that class, i.e., $numeraire,
as its extra argument. In both methods this extra parameter is passed using a special ar-
row notation. Another useful module is the Text::CSV_XS module, which enhances Perl’s
capabilities in handling CSV files. CSV files might be difficult to process if they include
non-separating commas as part of their value, as in ”USSR, Russian Federation”,

$str = ’Russia,"USSR, Russian Federation",922,365,RUS,RUS,143,USSR’;
use Text::CSV_XS;
my $csv = Text::CSV_XS->new;
$csv->parse($str);
my @fields = $csv->fields;
(

$Name, $Name2, $IMFcode, $ICPSRcode,
$WBcode, $McCcode, $PWTcode, $CapCode

)
= @fields;

print $Name2; # prints: USSR, Russian Federation

Often, different interfaces are available to the user. Consider the matrix data structure
example in Section 5.6 implemented as an anonymous array of anonymous arrays

$mat = [[1, 2, 3], [3, 4, 5]];

To print the matrix in its entirety, we can use the Data::Dumper module. We can use the
functional interface, by calling the Dumper function

use Data::Dumper;

print Dumper($mat);

use Data::Dumper;
print Dumper($mat);

32

$VAR1 = [
[

1,
2,
3

],
[

3,
4,
5

]
];

The same can be done using the object oriented interface

$d = Data::Dumper->new([$mat]);

print $d->Dump;

9. WWW interfacing with Perl

The Internet has become an essential tool to assist in the preparation and completion of a
statistical project. Students and practicing statisticians regularly access the Internet to locate
data, working papers, and statistical software. The Internet has also facilitated various forms
of collaborative work among statisticians and is widely used to disseminate results.

Perl is widely used to write server-side scripts such as interactive Web pages via the CGI
(Common Gateway Interface) protocol. Server-side applications can exploit the Internet’s
wide reach and popularity as a medium for surveys, experiments, and learning. An example of
such applications is Berkeley’s Internet Virtual Laboratory30 (IVLab), where the possibilities
of employing the Web as a source of survey data is investigated. Another example Rweb,31 a
Web based interface to R (the GNU implementation of the S programming language) were R
code can be modified or typed into a Web form and then submitted for on-the-fly execution.
CGI.pm is the standard Perl module for creating and parsing CGI forms. For more information
on using Perl for server processes consult Guelich, Gundavaram, and Birznieks (2000).

Perl can be used to write client-side processes as well. These processes can, for example,
mimic a “browser” as it collects information from a remote server using HTTP. It is possible
to check for software and data updates, list recent publications in a specific topic, etc. LWP
(short for “Library for World Wide Web in Perl”) is a collection of Perl modules for searching
and collecting data from the Web and for extracting information from HTML pages. For
example, the module LWP::Simple provides several functions for fetching Web pages. The
statements

use LWP::Simple;
$data = get(’http://lib.stat.cmu.edu/datasets/boston’);

assign the Boston house-price data from the StatLib dataset archive to the variable $data.
The variable can then be processed further within Perl.

30Located at http://emlab.berkeley.edu/ivlab/welcome.html.
31Located at http://calculators.stat.ucla.edu/Rweb/Rweb.JavaScript.html.

http://emlab.berkeley.edu/ivlab/welcome.html
http://calculators.stat.ucla.edu/Rweb/Rweb.JavaScript.html

33

As another more sophisticated example of data collection consider getting the latest Euro rate
against the US dollar from Yahoo!Finance. Here we use the Finance::YahooQuote module,

use Finance::YahooQuote;
print @{ getonequote("^XEU") }[2];

which printed, at the time of writing the review, 1.1516.

Another important use of the Web is to track down relevant information through search
engines. Using the SOAP::Lite module,32 which has an object-oriented interface, a search
string can be easily posted on a Web search engine and the results of the search can be directly
processed in Perl. Consider assessing the popularity of several programs used by statisticians
by the number of pages found by the Google search engine,

use SOAP::Lite;
$key = $ENV{GOOGLEKEY}; # needed to access SOAP API at Google
$google = SOAP::Lite->service(’file:./GoogleSearch.wsdl’);
foreach $query (qw/matlab minitab perl sas s-plus spss stata/) {

$result = $google->doGoogleSearch(
$key, $query, 0, 10, ’false’, ’’,
’false’, ’’, ’latin1’, ’latin1’

)->{’estimatedTotalResultsCount’}; # see Google docs
printf("%8s: %9d\n", $query, $result);

}

which produces the following output

matlab: 1160000
minitab: 123000

perl: 12600000
sas: 4040000

s-plus: 133000
spss: 726000

stata: 3540000

Note that this example requires the GoogleSearch.wsdl file in the current directory (a different
path could be specified), as well as a Google SOAP API access key (here retrieved from the
environment variable GOOGLEKEY), both available free of charge from http://www.google.
com/apis/. Note that the LWP module can also be used to retrieve the data of the last two
examples.

Robots, to search through the Web and collect data can also be easily implemented using
LWP. Robot applications cover such activities as searching, and surveying. Robots can be
programmed to collect statistics, or surf the Web and summarize their findings for a search
engine. These capabilities are provided by the LWP::RobotUA module. For more information
on the LWP modules see Burke (2002). Other modules provide simple interfaces to e-mail,
telnet, FTP, and other network services that can facilitate collaboration between researchers,
through synchronous and asynchronous forms of communication, and spread computations
and storage across different physical locations on the Web. See Stein (2001) for such examples
of network applications.

32The use of this module was suggested by an anonymous referee.

http://www.google.com/apis/
http://www.google.com/apis/

34

Part II

Statistical Computing

10. Introduction

Part I provided the basic introduction to the Perl programming language, and showed how
it can be used to process data for statistical purposes. In particular, we showed how Perl’s
process, file, and text manipulation facilities, can be used for a wide range of data processing
tasks that Statisticians face regularly, such as data transformation, validation and recoding.
We also showed how modules, which enhance Perl’s in many areas of application, can be used
in the collection, preparation, and formatting of data for statistical analysis. In Part I, Perl
was used mostly as a scripting language stressing its nature of “glue language” and its built-in
specialization in string manipulation through regular expression and hashes. Here in Part II
we show how Perl’s can be enhanced, through extension modules, to perform simple statistical
analysis and more powerful statistical computations.

There are many Perl modules that can be used for statistical computations. A search on the
CPAN web site returned, amongst others, the following modules potentially of interest to
Statisticians with different level of sophistication:

Statistics::Contingency, Statistics::OLS, Statistics::Descriptive, Statistics::TTest,

Statistics::Descriptive::Discrete, Statistics::GammaDistribution, Statistics::PointEstimation,

Statistics::Distributions, Statistics::ChiSquare, Statistics::DependantTTest,

Statistics::Frequency, Statistics::Table::F, Math::CDF, Math::Matrix, Math::MatrixReal,

PDL::R::math, and PDL::Matrix.

Even from a quick inspection of the list, it is apparent that different modules can provide over-
lapping functionality. Indeed, statistical modules, such as Statistics::Distributions and
Math::CDF, all provide tools for computing with statistical distributions. From an implemen-
tation point of view, modules providing similar functionality might differ in their interface,
the algorithms implemented, design, and so on. From a user point of view, the choice of which
module to employ will depend upon several factors, such as the field of application, ease of
use, efficiency, and sophistication of the user.

Given the open source nature of Perl, considerable information about these issues can be
gathered form inspecting the Perl code directly. Even so, testing can still provide critical
information for several reasons. For example, visual code inspection is not always practical as
it might be too time consuming and require a considerable knowledge of Perl and its different
programming styles. Also, even though a particular algorithm is theoretically sound, it is
important to assess whether it has been implemented correctly and efficiently in the Perl
module under scrutiny. Another potential benefit of thoroughly testing the modules using a
standard battery of tests is that it allows to make comparisons with other software packages
useful for statistics that have already been tested for reviews in specialized journals.

Given the plethora of modules currently available, it is difficult, if not impossible, to review all
modules potentially useful for doing statistics. Besides, any such information would rapidly
become outdated as new modules and module updates become available. We decided to
survey what seem to be the most “obvious” statistical modules, either because they appear

35

more readily in simple searches on CPAN, for example, or because mentioned more often in
the Perl literature.

11. Reproducible statistical computations using Perl

Claerbout (see, e.g., Buckheit and Donoho 1995), has recently championed the issue of repro-
ducibility in the computational sciences. Reproducing statistical computation results from
published work often proofs to be a difficult and daunting task. Reproducibility relies on
a plethora of implementation details that are difficult to communicate through conventional
printed publications.

Statistics is in essence computation on data. For a statistical project to be independently re-
producible, a prerequisite is that adequate documentation on the dataset used, its sources, the
processing it has been subjected to, as well as documentation on software and programming
code used for its analysis, should be made available. The Internet has become an important
medium for sharing data, software, and to communicate scientific research, making it an ideal
environment for providing such information.

Perl’s extensive network programming support, allows to collect in a short script, not only
details about data processing and the code needed for the analysis, but also, for instance,
the commands that retrieve the data itself and the software used for its analysis. A complete
statistical project with all the data and commands needed for its reproduction can be com-
pactly preserved and effectively communicated through a Perl script. The following example
illustrates this point. The example requires only R and LATEX to be reproduced.

Consider estimating the demand for clean air model using the well-known Boston housing
data (see Belsey, Kuh, and Welsch 1980, for example). Note that in the dataset available at
STATLIB each record spans over two contiguous lines.

0.00632 18.00 2.310 0 0.5380 6.5750 65.20 4.0900 1 296.0 15.30

396.90 4.98 24.00

0.02731 0.00 7.070 0 0.4690 6.4210 78.90 4.9671 2 242.0 17.80

396.90 9.14 21.60

...

The script downloads the Boston data from STATLIB, cleans and prepares the dataset, uses
R to estimate the coefficients of the model, saves the results in a file, and finally prints the
results in LATEX format.

36

downloads Boston dataset from STATLIB
use LWP::Simple;
getstore(

"http://lib.stat.cmu.edu/datasets/boston",
"boston.raw");

corrects for record spanning two lines
open(IN, "boston.raw");
open(OUT, ">boston.asc");
do { $line = <IN> } until $. == 22
or eof; # Skips the first 22 lines of header
while ($line = <IN>) {

chomp $line;
$line .= <IN>; # joins two lines
print OUT $line;

}
close(OUT);

sends data to R for regression analysis
open(RPROG,
"| c:/rw1081/bin/Rterm.exe --no-restore --no-save"
);
select(RPROG);
print <<’CODE’;
bost<-read.table("boston.asc",header=F)
names(bost)<- c("CRIM", "ZN", "INDUS",

"CHAS", "NOX", "RM",
"AGE", "DIS", "RAD",
"TAX", "PTRAT", "B",
"LSTAT", "MEDV")

attach(bost)
boston.fit <- lm(log(MEDV) ~ CRIM + ZN + INDUS +

CHAS + I(NOX^2) + I(RM^2) + AGE + log(DIS) +
log(RAD) + TAX + PTRAT + B + log(LSTAT))

sum <- summary(boston.fit)$coe[,1:2]
write.table(sum,"boston.out",quote = FALSE)
q()
CODE
close(RPROG);

creates LaTeX table with regression results
open(TABLE, "boston.out");
open(TEX, ">table.tex");
$prec = 3; # sets number of decimals
$width = 9; # sets the width of the field
do { <TABLE> } until $. == 1 or eof; # Skips the first line of header
while (<TABLE>) {

chomp;
@line = split;
printf TEX "%11s & %${width}.${prec}g & %${width}.${prec}g\\\\ \n", $line[0],
$line[1], $line[2];

}
close(TABLE);

37

Table II: OLS estimates of the demand for clean air model

Variable
Coefficient Standard
estimate error

(Intercept) 4·56 0·154
CRIM −0·0119 0·00124
ZN 8·02e− 005 0·000506
INDUS 0·00024 0·00236
CHAS 0·0914 0·0332
I(NOX2) −0·638 0·113
I(RM2) 0·00633 0·00131
AGE 9·07e− 005 0·000526
log(DIS) −0·191 0·0334
log(RAD) 0·0957 0·0191
TAX −0·00042 0·000123
PTRATIO −0·0311 0·00501
B 0·000364 0·000103
log(LSTAT) −0·371 0·025

close(TEX);

The TEX file can be included in a document using the command \input{table}. The result,
after compilation in LATEX is the typeset Table II.

These results are easily reproducible, as they can be generated in a matter of minutes and do
not require proprietary data or licensed software.

Another illustration of reproducible statistical computations using Perl, is provided in Ap-
pendix D. The script downloads and installs the DIEHARD test programs, produces a file
containing 3 millions random numbers in hex format, transforms the file into a binary format
using an auxiliary program, sends the binary file to the main test program, extracts from
the output the computed p-values,33 uses the Statistics::Descriptive module to obtain
a frequency table, prints the results with tabular format in a TEX file. Explanation of most
of the code is provided in this paper.

12. Assessing the numerical reliability of modules

To assess the numerical and probabilistic reliability of the Perl modules we follow McCullough
(1998) proposed methodology. This testing methodology focuses on three features of statistical
software:

(i) estimation, using the Statistical Reference Datasets34 (StRD) (Rogers, Filliben, Gill,
Guthrie, Lagergren, and Vangel 1998) from the National Institute of Standards and

33The standard practice of doubling the one-sided p-value to obtain a two-sided p-value is not appropriate
for an asymmetric distribution. The CDF scale can be conveniently used to assess the results of the tests. A
large CDF-value corresponds to a small p-value and indicates a significant result. A small CDF-value indicates
a close match between observed and expected frequencies. In theory, if the CDF-value is less that 0.025 or
greater than 0.975 we reject the null at the 5 per cent significance level, however, in practice, because of the
large number of tests, unless stated differently, a test is considered failed if all CDF-values are either zero or
one.

34Available at the web address http://www.itl.nist.gov/div898/strd/.

http://www.itl.nist.gov/div898/strd/

38

Technology (NIST) to evaluate the accuracy of univariate summary statistics and linear
regression;

(ii) statistical distributions, using the exact values, computed with ELV (Knüsel 1989) to
verify the accuracy of statistical distributions computations; and

(iii) random number generation, using the DIEHARD (Marsaglia 1996) Battery of Random-
ness tests to determine whether random numbers are seem to behave as independent
samples uniformly distributed over (0,1).

Accuracy of the estimates will be measured by the base-10 logarithm of the relative error
(LRE) given by the formula

lre(q, c) = − log10

(
|q − c|
|c|

)
, (1)

where q represents the estimated value and c the correct value. When the two values are
sufficiently close, the LRE is a measure of the number of correct significant digits. The
implementation in Perl used for this paper that allows for cases where lre function is undefined
and checks for closeness of estimated and correct values, is provided in Appendix A.

13. Speed of execution benchmarking in Perl

As often there are several Perl modules providing similar functionality. Also there are many
ways in which the same task can be accomplished. It is therefore, essential to be able to assess
the relative efficiency in terms of speed of execution, of various modules and approaches. To
compare the execution speed of different implementations we can use the Benchmark module.
The module is part of the standard Perl distribution. The Benchmark module provides a
number of routines to time the execution of Perl code. For example, timethis, times the time
it takes to run a block of code for a specified number of times, timethese, does the same
for several blocks of code, and cmpthese, conveniently prints the results of timethese as a
comparison chart. Consider comparing two ways taking the natural log of an array, one using
the map operator and the other using the for loop. This can be achieved with the following
block of code.

use Benchmark qw(timethese cmpthese);
@vect = (2.5, 3, 4.3, 5, 6.3, 34, 2323232, 0.000000032);
$results = timethese(

1e6,
{

MAP => ’map { log($_) } @vect;’,
FOR => ’for ($i = 0; $i <= $#vect; $i++) { log($vect[$i]) }’

}
);
cmpthese($results);

The above script returns the output

Benchmark: timing 1000000 iterations of FOR, MAP...
FOR: 15 wallclock secs (15.83 usr + 0.00 sys = 15.83 CPU) @ 63179.18/s

39

(n=1000000)
MAP: 7 wallclock secs (7.94 usr + 0.00 sys = 7.94 CPU) @ 125992.19/s

(n=1000000)
Rate FOR MAP

FOR 63179/s -- -50%
MAP 125992/s 99% --

From these results we can conclude that the transformation using the map operator is 50 per
cent faster than the for loop.

14. A Survey of modules for statistical analysis

14.1. Descriptive statistics

The Statistics::Descriptive module provides basic methods useful for descriptive statis-
tics. It has an object oriented design. The following example uses the Michelso NIST bench-
mark dataset for univariate summary statistics. The certified values to 15 figures for the
sample mean and sample standard deviation were also obtained from the same source.

@Michelso = qw(

299.85 299.74 299.90 300.07 299.93 299.85 299.95 299.98 299.98 299.88 300.00 299.98

299.93 299.65 299.76 299.81 300.00 300.00 299.96 299.96 299.96 299.94 299.96 299.94

299.88 299.80 299.85 299.88 299.90 299.84 299.83 299.79 299.81 299.88 299.88 299.83

299.80 299.79 299.76 299.80 299.88 299.88 299.88 299.86 299.72 299.72 299.62 299.86

299.97 299.95 299.88 299.91 299.85 299.87 299.84 299.84 299.85 299.84 299.84 299.84

299.89 299.81 299.81 299.82 299.80 299.77 299.76 299.74 299.75 299.76 299.91 299.92

299.89 299.86 299.88 299.72 299.84 299.85 299.85 299.78 299.89 299.84 299.78 299.81

299.76 299.81 299.79 299.81 299.82 299.85 299.87 299.87 299.81 299.74 299.81 299.94

299.95 299.80 299.81 299.87

);

To calculate the sample mean and sample standard deviation we need the following code.

use Statistics::Descriptive;
$stat = Statistics::Descriptive::Full->new();
$stat->add_data(@Michelso);
$mean = $stat->mean();
$stat->standard_deviation();
$Statistics::Descriptive::Tolerance = 1e-10;

The mean() method is used to obtain the mean. To obtain the standard deviation, the
standard deviation() method is used. The results of the calculation, along with the results
from other NIST test data of higher difficulty, are presented in Table III. The results from the
module are quite accurate and almost identical to the performance of statistical packages like
S-PLUS and SPSS (see, McCullough 1999). The sample mean is always accurately computed.
The sample standard deviation, as the complexity of the test data increases, is calculated with
decreasing accuracy. A quick look at the code reveals that an accurate one-pass algorithm is
implemented. This implementation retains the speed of a standard one-pass algorithm and
still seeks the accuracy of the two-pass algorithm.

40

Table III: Numerical accuracy of the Statistics::Descriptive module

StRD Sample Module Certified
LRE

(difficulty) statistic estimate value

Michelso mean 299·8524 299·852400000000 15
(low) s.d. 0·0790105478190846 0·0790105478190518 12·38227

NumAcc3 mean 1000000·2 1000000·2 15
(medium) s.d. 0·100000000035104 0·1 9·45464

NumAcc4 mean 10000000·2 10000000·2 15
(high) s.d. 0·100000000558905 0·1 8·25266

Frequency distribution example As we will see in Section 14.6, the output of the
DIEHARD tests is a file containing several p-values interspersed in the other test output.
Under the respective null hypotheses, all of the p-values are independent and uniformly dis-
tributed over the interval (0, 1). Consider testing informally this hypothesis by construction
a frequency distribution.
As the battery of tests can return more than 200 p-values, if done for several generators,
the process of manually collecting, summarizing, and elaborating the results can become a
quite tedious and error prone task. Here we show how Perl can be used to “capture” the
p-values, store them into an array, and then, using the Statistics::Descriptive module,
construct a frequency distribution table to assess whether the observed p-values follow a
uniform distribution. In the output file, the p-values are reported using different printing
formats. Here is a representative list

p-value .098288

p-value: .781201

p-value= .73935

p-values: .424192

pvalue= .48598

p= .33395

Let us assume for simplicity that this list exhausts all possible cases. A basic Perl regular
expression to subsume the commonality in all of the above expressions can be defined as
follows:

m/
p # mandatory character ’p’
-? # optional ’-’
(?: # starts optional non-remembered group

values? # text string with optional ’s’
)? # ends optional non-remembered group
[:=]? # optional ’:’ or ’=’
\s* # optional white space
(# capture in $1

\. # mandatory decimal point
\d+ # mandatory decimal number

)
/gx

Note that the /x pattern modifier allows white space can be embedded in the regular expres-
sion without altering its meaning. Since comments are treated as white space, the regular

41

expression can be extensively commented. The /g pattern modifier finds all occurrences.
Consider processing the TT800.out file (see Section 14.6.3 on page 51).

open(IN, "TT800.out");
$count = 0;
while ($line = <IN>) {

if ($line =~ m/p-?(?:values?)?[:=]?\s*(\.\d+)/) {
$count++; # counts matches
push (@p_vals, $1); # stores p-values

}
}

These patterns could be refined, expanded, and layered further to match exactly all occur-
rences of the p-values. Now, the function frequency distribution() can be used to

use Statistics::Descriptive;
$stat = Statistics::Descriptive::Full->new();
$stat->add_data(@p_vals);
%f = $stat->frequency_distribution(10);

To print the frequency distribution in order we can use the following block of code

print "Total matches: $count\n";
for (sort { $a <=> $b } keys %f) {

$co = 100 * $f{$_} / $count;
printf "key = %2.1f, count = %2.0f\n", $_, $co;

}

which produces the output

Total matches: 81
key = 0.1, count = 12
key = 0.2, count = 15
key = 0.3, count = 9
key = 0.4, count = 6
key = 0.5, count = 17
key = 0.6, count = 7
key = 0.7, count = 7
key = 0.8, count = 9
key = 0.9, count = 7
key = 1.0, count = 10

With discrete or discretized data, a much more efficient option for descriptive statistics, both
in terms of memory use and speed, is provided by the Statistics::Descriptive::Discrete
module.

14.2. Two-sample t test

The Statistics::TTest module can be used to compare two independent samples. It takes
two array of point measures and requires the Statistics::PointEstimation module to
compute confidence intervals, the t-statistic, and p-value, needed to test the null hypothesis
of no difference in means. There are no NIST dataset for a simple t test. However, since t tests

42

are just a special case of ANOVA when there are only two levels, we can use the AtmWtAg
ANOVA balanced dataset from NIST, which consists of 48 observations on one factor with
2 levels. This test dataset has a difficulty rating of “average.” The square of the computed
sample t-statistic can be compared with the the certified F -statistic. The following script can
be used to perform a two-sample t test analysis.

use Statistics::PointEstimation;
use Statistics::TTest;

@r1=(107.8681568, 107.8681465, 107.8681572, 107.8681785, 107.8681446, 107.8681903,
107.8681526, 107.8681494, 107.8681616, 107.8681587, 107.8681519, 107.8681486,
107.8681419, 107.8681569, 107.8681508, 107.8681672, 107.8681385, 107.8681518,
107.8681662, 107.8681424, 107.8681360, 107.8681333, 107.8681610, 107.8681477);

@r2=(107.8681079, 107.8681344, 107.8681513, 107.8681197, 107.8681604, 107.8681385,
107.8681642, 107.8681365, 107.8681151, 107.8681082, 107.8681517, 107.8681448,
107.8681198, 107.8681482, 107.8681334, 107.8681609, 107.8681101, 107.8681512,
107.8681469, 107.8681360, 107.8681254, 107.8681261, 107.8681450, 107.8681368,);

$ttest = new Statistics::TTest;
$ttest->set_significance(90);
$ttest->load_data(\@r1, \@r2);
$ttest->output_t_test();
$ttest->set_significance(99);
$ttest->print_t_test(); # list out t-test related data

The output includes the p-value of the statistic, the confidence interval, and a test for the
equality of the variances. The summary output of the test (shortened for space reasons) is
shown below.

Summary from the observed values of the sample 1:
sample size= 24 , degree of freedom=23
mean=107.868153766667 , variance=1.70644927517612e-010
standard deviation=1.30631132398679e-005 , standard error=2.66649682415596e-006
the estimate of the mean is 107.868153766667 +/- 4.5701089069209e-006
or (107.868149196558 to 107.868158336776) with 90 % of confidence
t-statistic=T=40453134.1607019 , Prob >|T|=1.62447832963153e-012

Summary from the observed values of the sample 2:
sample size= 24 , degree of freedom=23
mean=107.868136354167 , variance=2.85666938357049e-010
standard deviation=1.69016844828274e-005 , standard error=3.45004189803694e-006
the estimate of the mean is 107.868136354167 +/- 5.91302680904552e-006
or (107.86813044114 to 107.868142267193) with 90 % of confidence
t-statistic=T=31265746.7770299 , Prob >|T|=1.62436730732907e-012

Comparison of these 2 independent samples.
F-statistic=1.67404295288863 , cutoff F-statistic=2.0144 with alpha level=0.1 and df =(23,23)
equal variance assumption is accepted(not rejected) since F-statistic < cutoff F-statistic
degree of freedom=46 , t-statistic=T=3.99333614216051 Prob >|T|=0.000236340000000057
the null hypothesis (the 2 samples have the same mean) is rejected since the alpha level is 0.1
difference of the mean=1.74124999858805e-005, standard error=4.36038924999182e-006
the estimate of the difference of the mean is 1.74124999858805e-005 +/- 7.31978543396126e-006
or (1.00927145519192e-005 to 2.47322854198417e-005) with 90 % of confidence

43

Table IV: Independent samples t test using the AtmWtAg dataset

Module
Module Certified

LRE
estimate F -statistic

Statistics::TTest 15·9467335442853 15·9467335677930 8·83146
Statistics::Table::F 14 15·9467335677930 0·91337

Table V: Upper-tail probability of standard normal distribution

x
Module Exact

LRE
estimate ELV value

3·0 1·34990e−003 1·34990e−003 6·0000
4·0 3·16710e−005 3·16712e−005 5·1996
5·0 2·86650e−007 2·86652e−007 5·1563
8·0 6·22100e−016 6·22096e−016 5·1918
9·0 1·12860e−019 1·12859e−019 5·0525
9·7 1·50750e−022 1·50749e−022 5·1783
9·8 5·62930e−023 5·62928e−023 5·4494
9·9 2·08140e−023 2·08138e−023 5·0173

10·0 7·61990e−024 7·61985e−024 5·1830
11·0 1·91070e−028 1·91066e−028 4·6791

Table IV shows the certified F -statistic calculated by NIST and the results of the t test
using the Statistics::TTest and the Statistics::Table::F modules. The latter module
performs a one-way analysis of variance (see Section 14.4). The computed LRE show that
the t test module is quite accurate. Note that the ANOVA module fails to pass the medium
difficulty test.

14.3. Statistical distributions

For simple statistical analysis, in order to test hypothesis, statistical distribution functions
that return critical values and calculate p-values are required. Perl provides several packages
that can perform statistical computations. The most obvious choice, from searching CPAN,
seems to be the Statistics::Distributions module. The Statistics::Distributions
module provides functions to compute the upper-tail quantiles and upper-tail probabilities
for the Normal, Student’s t, chi-square, and F distributions. The module documentation
claims that results are computed with 5 significant figures. It is not clear how many are
correct and for what range of values the results are acceptable. A few examples of testing
distributions will be given.

Standard normal distribution The function Statistics::Distributions::uprob ($x) com-
putes the probability that random variable distributed standard normal is greater than $x.
Table V reports the estimated values, the exact values, computed by ELV (Knüsel 1989), and
the LRE.

Student’s t distribution The function Statistics::Distributions::tprob ($df,$x) computes
the probability that an t-distributed random variable with $df degrees of freedom is greater

44

Table VI: Upper-tail probability of Student’s t distribution

x d.f.
Module Exact

LRE
estimates ELV value

3·0 100 1·70400e−03 1·70396e−03 4·6294
4·0 100 6·07620e−05 6·07618e−05 5·4826
8·0 100 1·13640e−12 1·13643e−12 4·5784
9·0 100 7·60500e−15 7·68039e−15 2·0081
9·7 100 2·22040e−16 2·25155e−16 1·8590
9·8 100 1·66530e−16 1·35896e−16 0·6470
9·9 100 5·55110e−17 8·20226e−17 0·4905

10·0 100 0 4·95084e−17 0
10·1 100 0 2·98859e−17 0

Table VII: F distribution

x n1 n2
P (X > x)

fprob exact

1 1000 1000 1/2 0.5000
1 2000 2000 1/2 0.5000
1 2100 2100 1/2 0.0000
1 3000 3000 1/2 0.0000

than $x. The following code prints a table of x values and the corresponding upper-tail
probabilities.

use Statistics::Distributions;
@x = (3, 4, 8, 9, 9.7, 9.8, 9.9, 10, 10.1);
foreach $x (@x) {

$tprob = Statistics::Distributions::tprob(100, $x);
print "$x $tprob \n";

}

Table VI shows the results of the computations, the ELV exact values, and the LRE. The
estimated tail probabilities are rather inaccurate in the extreme tails. Figure 3 provides more
comprehensive view of the function’s numerical accuracy.35 For comparison, we note that R
matches all the ELV exact values in the above tests.

General Comment The accuracy seems adequate for most practical situations. For more
sophisticated uses it might be advisable to use another module. There is a problem with
the order of the arguments of the functions. The variable comes after the parameters of the
distributions. This is both non conventional and mathematically unacceptable. User of other
statistical programs could find this confusing. An optional noncentrality parameter is missing,
although the noncentral Student’s t distribution plays an important role in statistical testing
theory. A better option is to use the Math::CDF module which provides a Perl interface to the
DCDFLIB library of C routines for cumulative distribution functions, quantile functions, etc.

35The plot was done using the lattice R library.

45

degrees of freedom

x

2

4

6

8

10

12

50 100 150 200

−0

−1

−2

−3

−4

−5

Figure 3: LRE of Student’s t distribution for a range of x’s and degrees of freedoms

This library is also used, as an alternative to ELV, in assessing the reliability of distribution
computations. More information on the library can be obtained at http://www.netlib.org/.

Another approach to compute with distributions, is to use special functions such as the loga-
rithm of the gamma function and the incomplete beta function (see, Abramowitz and Stegun
1965). The logarithm of the gamma function can be used for calculating the pdf of Student’s
t distribution, the F distribution, the chi-square distribution and others. The CDF for Stu-
dent’s t distribution, the F distribution, the binomial distribution and the negative binomial
distribution is evaluated using the incomplete beta function. The CDF for the chi-square
distribution can be evaluated using the incomplete gamma function (see, Press, Teukolsky,

http://www.netlib.org/

46

Vetterling, and Flannery 1995). The module Statistics::ROC provides, among others, the
logarithm of the gamma function, the incomplete beta function, and their inverses. Con-
sider computing the upper-tail probability for the binomial distribution. The following script
uses the incomplete beta function to compute the upper-tail binomial cumulative distribution
function with n = 19, x = 15, and p = 0.5.

use Statistics::ROC;
$n = 19;
$x = 15;
$p = 0.5;
$y = Betain($p, $x, $n - $x + 1);

The statement print $y returns 0.00960540771503556 which, according to ELV, is correct to
at least 6 significant digits.

14.4. ANOVA and Kruskal-Wallis tests

The module Statistics::Table::F provides the function anova which returns the one-way
analysis of variance F -statistic. The name of the function is misleading as no estimated
variance components are returned. The following examples obtain the variance components
needed to construct ANOVA tables, by slightly modifying the anova function (see Orwant
et al. 1999, pp. 617–620). Consider the SiRstv ANOVA balanced dataset from NIST, which
consists of 25 observations on one factor with 5 levels. This test dataset has a difficulty rating
of “low.” The following script can be used to obtain the F -statistic of the one-way ANOVA
analysis.

use Statistics::Table::F;
$SiRstv = [

[196.3052, 196.1240, 196.1890, 196.2569, 196.3403],
[196.3042, 196.3825, 196.1669, 196.3257, 196.0422],
[196.1303, 196.2005, 196.2889, 196.0343, 196.1811],
[196.2795, 196.1748, 196.1494, 196.1485, 195.9885],
[196.2119, 196.1051, 196.1850, 196.0052, 196.2090]

];
print anova($SiRstv);

The print statement returns 1.18046238617325. Table VIII shows the ANOVA tables ob-
tained by applying the modified anova function on two NIST dataset. The Table reports also
the certified values calculated by NIST, and the LREs of the F -statistics. The results show
that the module does not pass the medium difficulty problem. It should be kept in mind,
that other well known statistical packages perform similarly on these tests (see, McCullough
1999).

The Statistics::KruskalWallis module can be used to perform the Kruskal-Wallis rank
sum test of the null that the location parameters are the same for three or more groups of
unequal sizes. Consider using the SiRstv dataset. The following script

use Statistics::KruskalWallis;
@group_1 = (196.3052, 196.124, 196.189, 196.2569, 196.3403);
@group_2 = (196.3042, 196.3825, 196.1669, 196.3257, 196.0422);
@group_3 = (196.1303, 196.2005, 196.2889, 196.0343, 196.1811);

47

Table VIII: Numerical accuracy of the Statistics::Table::F module

StRD Source of
d.f.

Sums of Mean
F -statistic LRE

(diffic.) variation squares square

SiRstv
(low)

Certified values

8.00125

between 4 0·0511462616000000 0·0127865654000000
1.18046237440255

within 20 0·216636560000000 0·0108318280000000
Statistics::Table::F module

between 4 0·0511462620925158 0·012786565523129
1.18046238617325

within 20 0·216636559925973 0·0108318279962987

SmLs04
(medium)

Certified values

0

between 8 1·68000000000000 0·210000000000000
21.0000000000000

within 180 1·80000000000000 0·0100000000000000
Statistics::Table::F module

between 8 1·40625 0·17578125
17.7631578947368

within 180 1·78125 0·00989583333333333

@group_4 = (196.2795, 196.1748, 196.1494, 196.1485, 195.9885);
$kw = new Statistics::KruskalWallis;
$kw->load_data(’group 1’, @group_1);
$kw->load_data(’group 2’, @group_2);
$kw->load_data(’group 3’, @group_3);
$kw->load_data(’group 4’, @group_4);
($H, $p_value) = $kw->perform_kruskal_wallis_test;
print "Kruskal Wallis statistic is $H\n";
print "p value for test is $p_value\n";

returns the output

Kruskal Wallis statistic is 3.43428571428571
p value for test is 0.32939

The Newman-Keuls test to test differences between pairs of groups is also implemented in the
module. The following block of code can be used to test differences between groups 1 and 2,
2 and 3, and 3 and 4. This is done here just for illustrative purposes; the results from the
ANOVA and the Kruskal-Wallis test do not warrant such an investigation.

($q, $p) = $kw->post_hoc(’Newman-Keuls’, ’group 1’, ’group 2’);
print "Newman-Keuls statistic for groups 1, 2 is $q, p value $p\n";
($q, $p) = $kw->post_hoc(’Newman-Keuls’, ’group 2’, ’group 3’);
print "Newman-Keuls statistic for groups 2, 3 is $q, p value $p\n";
($q, $p) = $kw->post_hoc(’Newman-Keuls’, ’group 3’, ’group 4’);
print "Newman-Keuls statistic for groups 3, 4 is $q, p value $p\n";

The output is

Newman-Keuls statistic for groups 1, 2 is -0.0534522483824847, p value <0.1
Newman-Keuls statistic for groups 2, 3 is 1.12249721603218, p value <0.1
Newman-Keuls statistic for groups 3, 4 is 0.374165738677394, p value <0.1

48

Table IX: Numerial accuracy of the Statistics::OLS module

Variable
Module Certified

LRE
estimate value

constant −0.26232307377389 −0.262323073774029 12.2758219338587
slope 1.00211681802045 1.00211681802045 15

14.5. Simple linear regression

Currently Perl modules do not provide multiple regression estimation methods. The module
Statistics::OLS performs a simple linear regression estimation. The module has an object-
oriented interface and computes slope and intercept of the regression line. Other regression
statistics such as t-statistics, R2, standard error of regression, Durbin-Watson, predicted
values, and residuals, are also provided. The following example uses the Norris benchmark
NIST dataset, the only test data suitable for simple linear regression.

@xdata =

qw(0.2 337.4 118.2 884.6 10.1 226.5 666.3 996.3 448.6 777.0 558.2 0.4 0.6

775.5 666.9 338.0 447.5 11.6 556.0 228.1 995.8 887.6 120.2 0.3 0.3 556.8 339.1 887.2

999.0 779.0 11.1 118.3 229.2 669.1 448.9 0.5);

@ydata =

qw(0.1 338.8 118.1 888.0 9.2 228.1 668.5 998.5 449.1 778.9 559.2 0.3 0.1

778.1 668.8 339.3 448.9 10.8 557.7 228.3 998.0 888.8 119.6 0.3 0.6 557.6 339.3 888.0

998.5 778.9 10.2 117.6 228.9 668.4 449.2 0.2);

use Statistics::OLS;
$ls = Statistics::OLS->new();
$ls->setData(\@xdata, \@ydata);
$ls->regress();
($intercept, $slope) = $ls->coefficients();
$R_squared = $ls->rsq();
($tstat_intercept, $tstat_slope) = $ls->tstats();
$sigma = $ls->sigma();
$durbin_watson = $ls->dw();
@predictedYs = $ls->predicted();
@residuals = $ls->residuals();
print "intercept: $intercept, slope: $slope\n";

Table IX shows the results of the test. Even though the results are quite accurate, this module
has limited practical use for Statisticians. More useful regression computations using matrix
operations will be presented in Section 16.8 starting on page 62.

14.6. Random number generation

Introduction

An important computational tool in statistics is the Monte Carlo method. The Monte Carlo
method is a controlled statistical experiment executed on a computer using algorithms that
produce deterministic, repeating, sequences of computer numbers, referred to as pseudoran-
dom numbers, that “appear” as random samples drawn from a known distribution, typically,

49

samples of independent and identically distributed U(0, 1) random variables. An algorithm
that generates such sequences of pseudorandom numbers is commonly known as a random
number generator (RNG).

In Perl, several modules that export RNG are available. Some modules are not readily useful
to the statistician, as they provide random numbers for which the underlying distribution is
not known. For, example, because of Perl’s strong emphasis on network programming, there
are modules for the generation of so called “truly” random numbers, which are employed
chiefly in cryptographic applications.

We will survey the available Perl RNG modules that produce random sequences that appear
to be independent and uniformly distributed over (0,1). Several techniques are available to
generate variates from other distribution, using uniform random numbers as building blocks
(see, e.g., Devroye 1986). We will summarize their main deterministic properties of the RNGs
supplied by the modules, show how they can be used to generate random numbers within Perl
scripts, test their probabilistic qualities by subjecting their output to a battery of test, and
assess the efficiency through speed benchmarking.

There are several collection of tests for RNG in wide use today. A popular one is the
DIEHARD battery of randomness tests Marsaglia (1996). This battery of tests provides
a wide range of statistical tests for evaluating the stream of output of RNGs. The DIEHARD
program, provided as an MSDOS executable or as C source code, is freely available from
http://stat.fsu.edu/\simgeo.

Speed comparison will performed using the Benchmark module, as outlined in Section 13. This
benchmarking is particularly critical for RNGs as they are designed to take full advantage of
the computer architecture and the available fast basic operations. If not coded properly their
execution might be considerably slowed down.

Survey of Perl RNG modules

Perl’s built-in rand() function Rand uses the rand()36 RNG from the standard C library
which is a linear congruential RNG with period length 231.

print rand();

By default, when the seeds are set to values based on the system clock. The function to set
the seeds, is srand(). For instance,

$seed = 4343434;

srand($seed);

print rand(); # prints 0.85723876953125

The Math::Random Module Math::Random is a Perl implementation of RANDLIB, the
library of FORTRAN routines for random number generation, by Brown, Lovato, Russell, and
Venier (1997). The uniform RNG implemented is derived from the package of generators
described in L’Ecuyer and Côté (1991), based on the same combined linear congruential

36This is not always the case as it depends on the platform and compiler used. In more recent Perl versions,
depending on the availability, one of drand48(), random(), and rand() (with decreasing order of priority) could
be implemented.

http://stat.fsu.edu/$sim $geo

50

generator, with a period length approximately equal to 261. A set of seeds, spaced 250 values
apart, give rise to 32 (virtual) generators. Each generator is further split into 220 = 1, 048, 576
blocks of numbers each of length 230 = 1, 073, 741, 824. In the original implementation, each
generator can be made to jump ahead, with a function call, to the start of the next block,
or of its current block, or to the start of the first block. These feature can be used to code
more efficient computer simulations. In the Perl module, the advanced facilities to split the
generator into many virtual generators and to skip ahead in the sequence are not provided.

The simplest way to use the RANDLIB generator in Perl is by executing the following script

use Math::Random;
print random_uniform(); # prints U(0,1) number

The generator requires a two-dimensional seed. The first element of the seed vector should be
an unsigned integer in the (1, 2147483562) range, the second in (1, 2147483398). By default,
when the Perl processor loads package Math::Random, the seed is set to values based on the
system clock. The function to set the seed is random set seed(). For instance,

use Math::Random;
$seed_1 = 1234567890;
$seed_2 = 1234567890;
@seed = ($seed_1, $seed_2);
random_set_seed(@seed);
print random_uniform();

prints 0.222457440993228. The function random get seed() can be used to retrieve the current
seeds. This function can also return an array of uniform random numbers when given an
integer argument. For example,

@rnd_vec = random_uniform(100);

creates an array of uniform random numbers of length 100.

The Math::Random::TT800 Module This Perl extension module implements a partic-
ular parametrization of Matsumoto’s twisted generalized feedback shift register generator
(TGFSR), called TT800, described in Matsumoto and Kurita (1992, 1994), with a period
length of 2800 − 1 ≈ 6.7 · 10240. This generator is derived from the generalized feedback shift-
register generator suggested by Lewis and Payne (1973). The module has an object-oriented
interface. Once the generator has been created with a new statement, the method next()
returns a double-precision floating point number between 0 and 1. The following script prints
one uniform random number

use Math::Random::TT800;
$rand = new Math::Random::TT800;
print $rand->next();

The function next int() returns a integer value filled with 32 random bits.

The TT800 generator takes 25, not all zero, 32-bit integers as seed. If less than 25 integers
are supplied, the rest are taken from the default seed. To set the seed we can use the fllowing
script

51

use Math::Random::TT800;
@seed = (

913860295, 1086204226, 1322218135, 2107674887, 1421458520, 2141267188,
575078061, 1796978786, 476959775, 129791043, 2047223682, 1572134678,
571817061, 629482166, 694818294, 1914617414, 2018740633, 234577687,
1795180530, 1071903645, 821640312, 456869517, 829823942, 1469601523,
2145855977

);
$rand = new Math::Random::TT800 @seed;
print $rand->next(); # prints 0.616834293961719

The Math::Random::MT Module This module implements the Mersenne Twister RNG de-
veloped by Matsumoto and Nishimura (1998), a modification Matsumoto’s TGFSR generator
of Matsumoto and Kurita (1992, 1994). This generator has a huge Mersenne prime period
length of 219937 − 1 ≈ 106000 and its output is “twisted” to free it of long-term correlations
when considered from a viewpoint of 623 dimensions. The Perl implementation passed all
the DIEHARD statistical tests and, at the same time, proved to be faster than the RANLIB
RNG.

To generate a number between 0 and 1 using a default seed of 0, we can use the following
script

use Math::Random::MT;
$gen = Math::Random::MT->new();
print $gen->rand(); # prints 0.548813502304256

To set the seed and the range of the RNG, we can use the script

$seed = 42; # sets the seed
$gen = Math::Random::MT->new($seed); # creates generator
print $gen->rand(2**32); # 1608637542

Note that in this case the generator returns a positive integer in the specified range.

Other RNG Modules There are other Perl modules that provide RNGs that could be of
interest to Statisticians. For instance, the Math::RandomOrg module provides functions for re-
trieving thoroughly tested random numbers from the random.org server. The Truly::Random
module provides an ability to generate truly random numbers from within Perl programs. The
source of the randomness is from interrupt timing discrepancies. The Math::Rand48 module
provides an interface to the 48-bit family of random number functions, commonly provided
on UNIX systems. Another potentially useful module is PDL::RandVar::Sobol which is a
source of the increasingly popular quasi random numbers.

Statistical tests

The DIEHARD battery of tests37 requires as input a specially formatted binary file of 10 to
11 megabytes size. The RNG should produce 32-bit integers that should be saved in a text file
in hexadecimal form, 8 hex ‘digits’ per integer, 10 integers per line, and with no intervening
spaces.

37The version available at the moment of writing was: DOS, Jan 7, 1997.

52

Consider continuing the the TT800 example above, we can create a file satisfying the stated
conditions with the following statements,

Matsumoto’s TT800 pseudorandom number generator
use Math::Random::TT800;
open(OUT, ">TT800.hex");
select(OUT); # selects OUT as default output filehandle
for ($i = 0 ; $i < 3e6 ; $i++) {

printf "%08x", $rand->next_int(); # prints random 32-bit integer
if ($i % 10 == 9) { printf "\n" }
; # starts a new line every 10 no.

}

which saves the output in a file named TT800.hex. The MSDOS auxiliary program, asc2bin.exe,
provided in the test suit, can then be used to convert the hexadecimal file into a binary file,
the can be directly fed to the main DIEHARD routines. The code used to prepare the hex
input files for all generators is provided in Appendix B.

The following scripts runs the auxiliary asc2bin utility and the main diehard program pro-
viding the necessary input arguments. The output of the script is the file rand.out which
contains the results of the 15 tests.

open(INPUT, "| asc2bin");
select(INPUT);
print "\n";
print "\n";
print "\n";
print "TT800.hex\n"; # supplies hex input file name
print "TT800.bin\n"; # supplies binary output file name
close(INPUT);

open(INPUT, "| diehard");
select(INPUT);
print "TT800.bin\n"; # supplies binary input file name
print "TT800.out\n"; # supplies test output file name
print "111111111111111\n"; # asks for all 15 tests
close(INPUT);

Table X presents the results of the 15 DIEHARD tests. Unless stated differently, a test is
considered failed if all p-values are either zero or one. As expected Perl’s internal RNG failed
most of the tests. Considering also its relatively short period, we conclude that this generator
is not suitable for serious or intensive use. The Math::Random module failed two tests, whereas
the two long period TGFSR modules passed them all. These test results should be interpreted
with extreme caution. The DIEHARD tests were designed with generators with a 232 period
in mind. The observed inverse relationship between period length and number of failed tests,
suggests that further testing is required, before a more definite conclusion on the safety of a
generator can be reached.

53

Table X: Marsaglia’s DIEHARD tests for Perl modules

Test Perl’s rand RANDLIB MT TT800

Birthday Spacings fail pass pass pass
Overlapping 5-Permutation pass faila pass pass
Binary Rank (31× 31) fail pass pass pass
Binary Rank (32× 32) fail pass pass pass
Binary Rank (6× 8) failb pass pass pass
Bitstream (p-values) fail pass pass pass
OPSO failb pass pass pass
OQSO failb pass pass pass
DNA failb pass pass pass
Count the 1’s (stream of bytes) fail fail pass pass
Count the 1’s (specific byte) failb pass pass pass
Parking Lot pass pass pass pass
Minimum Distance pass pass pass pass
3-D Spheres pass pass pass pass
Squeeze fail pass pass pass
Overlapping Sums pass pass pass pass
Runs pass pass pass pass
Craps pass pass pass pass

aOne of the two p-values of the test was zero.
bMost p-values are either one or zero.

RNG timings

We can compare the speed of the different RNG module implementations using the Benchmark
module. There are two stages in the random generation process that can affect speed of
execution: the setting up stage and the random number generation stage. We will time only
the latter stage. The random number generation stage will be the more critical particularly
when large sequences or random numbers are required. The following script has been used to
time the generation of 3 million random numbers.

use Benchmark qw(timethese cmpthese);
use Math::Random; # begin set-up stage
use Math::Random::MT;
use Math::Random::TT800;
$RNG_MT = Math::Random::MT->new();
$RNG_TT800 = new Math::Random::TT800; # end set-up stage
$results = timethese(

3e6,
{

rand => ’rand()’,
TT800 => ’$RNG_TT800->next()’,
RANDLIB => ’random_uniform()’,
MT => ’$RNG_MT->rand()’

}
);
cmpthese($results);

The timing results are presented in Table XI. The cmpthese() function produces a comparison

54

Table XI: CPU time to generate 3 · 106 pseudo-random numbers

CPU time Perl’s rand RANDLIB TT800 MT

seconds 0.67 10.80 6.17 19.92

chart. Note that this function will be made available to the script only imported explicitly.
The results of the comparison comparison are

Rate MT RANDLIB TT800 rand
MT 150587/s -- -46% -69% -97%
RANDLIB 277829/s 84% -- -43% -94%
TT800 486066/s 223% 75% -- -89%
rand 4464286/s 2865% 1507% 818% --

The internal Perl rand() function turned out to be extremely fast, more than 8 times faster
than the second fastest, TT800. MT turned out to be the slowest implementation, 3 times
slower than TT800, two times slower than RANDLIB.

55

15. An overview of modules for numerical linear algebra

The ease with which Perl can be used for statistics depends critically on how closely the
available data types match the Statistician’s problem space. For example, matrices are com-
monly used in statistics to store the original and transformed dataset, to perform matrix
computations, and to store the final results. Perl’s object-oriented nature allows to create
data structure suitable to store and manipulate matrices. Several of these types are made
available through linear algebraic modules.

There are several modules that provide linear algebraic computational tools. For example, one
of the most complete is the Math::MatrixReal module. This module implements the data
type “real matrix,” and a set of operators and methods to conveniently manipulate them.
Besides basic matrix operations, the module provides methods to compute norms, inverses,
determinants, condition numbers, vector lengths, various matrix decomposition methods, etc.
The module provides also convenient input-output methods for matrices (including a method
that writes matrices in LATEX typesetting code).

This module has an object-oriented interface. An object-oriented language feature useful in
using modules is the possibility to overload basic arithmetic operators. Perl allows to overload
most of the existing operators with additional meanings depending on the context in which
they are used. This feature is particularly convenient when using functions and methods to
define and manipulate elementary mathematical structures such as matrices, results in an
excessively burdensome and unintelligible syntax.

Consider using Math::MatrixReal for a simple matrix computation, such as A · BT + C,
after defining the three matrices involved using the following code.

use Math::MatrixReal;
$A =
Math::MatrixReal->new_from_rows([[4, 2, 2], [3, 6, 1]])
; # creates a 2x3 matrix

$B =
Math::MatrixReal->new_from_rows([[1, 2, 4], [1, 0, 2]])
; # creates a 2x3 matrix

$C =
Math::MatrixReal->new_from_rows([[4, 2], [3, 7]])
; # creates a 2x2 matrix

we can then use methods provided by the module to perform the computation. The following
operations are required:

$BT = new Math::MatrixReal(3, 2); # creates matrix to store the transpose
$TOT = new Math::MatrixReal(2, 2); # creates matrix to store final result
$BT->transpose($B); # transposition of matrix
$TOT->add($A->multiply($BT), $C); # multiplication & addition of matrices

It is clear that using the method-based interface is problematic, even in this simple calculation.
Using the overloaded operators, the code simplifies to

$S = $A * ~$B + $C;

Note that by using the overloaded operators the creation of new matrices containing the
results of the matrix operations is arranged automatically. The statement

56

print $S->as_latex((format => "%d", align => "l", name => "S"));

prints

$S = $ $
\left(\begin{array}{ll}
20&10 \\
22&12
\end{array} \right)
$

which, processed with LATEX produces

S =
(

20 10
22 12

)
More limited linear algebraic tools are provided also by the Math::Matrix module and by
the Math::Cephes::Matrix module, a Perl interface to the Cephes matrix routines. The
Math::MatrixSparse module provides basic matrix operations for sparse matrices. Methods
for solving linear systems iteratively, including Jacobi, Gauss-Seidel, and Symmetric Over-
Relaxation are made available.

In the next Section we look at the PDL module, for efficient numerical computing. The
problem with the above mentioned modules is their inefficiency, both in terms of speed and
memory usage. As an illustration, consider comparing the Math::MatrixReal and PDL using
the Benchmark module.

use Benchmark qw(timethese cmpthese);
use PDL;
use Math::MatrixReal;
$A = pdl [[4, 2, 2], [3, 6, 1], [3, 6, 1]]; # 3x3 matrix
$B =
Math::MatrixReal->new_from_rows(
[[4, 2, 2], [3, 6, 1], [3, 6, 1]]); # creates a 3x3 matrix

$results = timethese(
100000,
{

PDL => ’$A x $A’,
Math::MatrixReal => ’$B->multiply($B)’

}
);
cmpthese($results);

Benchmark: timing 100000 iterations of Math::MatrixReal, PDL...
Math::MatrixReal: 20 wallclock secs (19.20 usr + 0.00 sys = 19.20 CPU) @ 5207.25/s

(n=100000)
PDL: 16 wallclock secs (16.48 usr + 0.00 sys = 16.48 CPU) @ 6066.49/s

(n=100000)

Rate Math::MatrixReal PDL
Math::MatrixReal 5207/s -- -14%
PDL 6066/s 17% --

57

From these results we can conclude that the PDL matrix multiplication operation is 17 per
cent faster than the Math::MatrixReal multiply() function.

16. The Perl Data Language extension module

The Perl Data Language38 (PDL) module endows Perl with capabilities analogous to those of
interactive systems for array manipulation such as MATLAB and IDL. PDL was founded by the
astronomer Karl Glazebrook, and is an ongoing project that involves many Perl programmers.

The PDL module enables efficient numerical computing in Perl. PDL introduces a compactly
stored multidimensional array data type that can be manipulated with fast low-level languages
like C, FORTRAN, or Perl itself.

The PDL class provides the fundamental operations of numerical linear algebra. Various con-
structors can create multidimensional arrays from lists of numbers and other arrays. Several
functions can be used to access elements and slices of arrays. User-friendly, overloaded, basic
array operator, including array addition and multiplication, and element-by-element array
operations, are made available to manipulate arrays, in a fashion analogous to the matrix
algebra as introduced in textbooks. A print method for conveniently printing arrays, is also
provided.

This module provides an interface to part of the SLATEC library39 of routines to manipulate
matrices, calculate FFT’s, fit data using polynomials, and integrate using piecewise cubic
Hermite interpolation.

PDL provides also a number of interfaces to powerful two and three dimensional graphics
libraries such as OpenGL and PGPLOT. We will not make use of graphics in our examples
as this would require the separate installation of graphics libraries. Moreover, these libraries
are have some limitations and are more difficult to install in non-Unix environments.

16.1. PDL documentation and other resources

Information on the PDL module is available, as most Perl modules, at the Perldoc.com Web
site located at http://www.perldoc.com/. PDL has also a dedicated official site located at
http://pdl.perl.org/, where documentation, demos, frequently asked questions, mailing
lists, and other useful information can be consulted. A brief introduction of PDL can be
found in Chapter 7 of Orwant et al. (1999). As some PDL routines are not well documented,
often the original FORTRAN or C code source documentation needs to be consulted. This is
the case of the implemented SLATEC functions (see Footnote 39).

38At the moment of writing this paper, a Windows binary version of PDL-2.2.1 was available for use with Ac-
tivePerl 5.6. With ActivePerl, PDL can be installed using the Perl Package Manager (PPM). After downloading
the zip file containing the binary distribution of PDL for Win32, and unzipping the PDL binary distribution
for Win32, the file needs to be unzipped using folder names. From within the folder containing the PDD file
PDL.ppd, PDL can be installed by typing ppm install PDL. PPD files are made available for ActivePerl users.
These files are produced compiling open-source code available through CPAN using Microsoft Visual C++.

39The SLATEC Common Mathematical Library is a comprehensive software library written in FORTRAN
77, containing over 1400 general purpose mathematical and statistical routines (For more information, see
http://www.netlib.org/slatec/).

http://www.perldoc.com/
http://pdl.perl.org/
http://www.netlib.org/slatec/

58

16.2. PDL shell

PDL can be used as any other Perl module from a script by including the statement

use PDL;

at the top of the Perl script. PDL has also a shell interface for interactive data analysis. The
PDL shell can be invoked from the operating system command line by typing perldl, as the
following screen output illustrates.

C:\>perldl

perlDL shell v1.30

PDL comes with ABSOLUTELY NO WARRANTY. For details, see the file

’COPYING’ in the PDL distribution. This is free software and you

are welcome to redistribute it under certain conditions, see

the same file for details.

ReadLines enabled

Reading PDL/default.pdl...

Found docs database I:/Perl/site/lib/PDL/pdldoc.db

Type ’help’ for online help

Type ’demo’ for online demos

Loaded PDL v2.2.1cvs (supports bad values)

perldl>

Here follow a few commands that demonstrate some of PDL’s capabilities, in its interactive
mode. Note that, in this mode, a statement need not and with a semicolon. Also, the print
command can be shortened to p.

perldl> $y = grandom(100); $x = grandom(100); # normally distributed random numbers

perldl> p histogram2d($y,$x,1,-4,8,1,-4,8) # obtains a transition matrix

[

[0 0 0 0 0 0 0 0]

[0 0 1 0 0 0 0 0]

[0 0 1 3 4 6 0 0]

[0 1 4 10 15 5 0 0]

[0 1 8 12 11 4 2 0]

[0 1 4 2 3 1 0 0]

[0 0 0 0 1 0 0 0]

[0 0 0 0 0 0 0 0]

]

16.3. Basic PDL data type

The basic data type of PDL is a multidimensional array of numbers of identical type stored
in logically contiguous memory locations, that can be manipulated directly with with fast
low-level languages like C, FORTRAN, or Perl itself. In Perl, arrays can store any type of
scalar. This flexibility is achieved at the expense of efficiency, by using pointers to scalars
instead of scalars. PDL allows also to specify the range of types. For example PDL supports
single and double precision floating point arithmetic, as well as several integer types, such as
byte, short, and long.

As one of the most useful data structures for statistics are matrices, in which columns cor-
respond to variables, and rows to observations of a dataset, in subsequent examples, we will

59

consider only one-and two dimensional arrays PDL objects, instead of more general multidi-
mensional object.

16.4. Constructing PDL objects

PDL introduces a new data structure the “pdl numerical array,” often referred to as a “pid-
dle.” A piddle is an object that can store efficiently a collection of numbers numbers for
manipulation with normal mathematical expressions.

The statements below show how PDL objects can be constructed. PDL variables can be
created in several ways.

use PDL;
$vec = pdl(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); # vector
$mat = pdl [[1, 2, 3, 4], [5, 6, 7, 8]]; # 2x4 matrix
$mat2 = pdl $mat; # make a new copy

Several functions are available to construct special vectors and matrices. For example,

use PDL;
$O = zeroes(3, 3); # null matrix of order 3
$one = ones(2, 5); # 5x2 matrix of ones
$I = zeroes(5, 5);
$I->diagonal(0, 1) .= 1; # identity matrix of order 5
$e = zeroes(9);
$e->slice(’2’) .= 1; # e_3
$i = ones(4); # vector of ones

16.5. Indexing PDL objects

Indexing and slicing arrays in PDL requires particular care, as it is in many ways unconven-
tional. A PDL vector data type is an ordered set of memory locations referenced by a name
and an integer index, starting with zero. Negative indices work like the case of Perl arrays
and return elements by counting backwards from the end. An element of a two-dimensional
PDL object, is indexed by two indices. In PDL, contrary to what most Statisticians are used
to, the first index represents the column and the second the row. This index order is common
practice in image processing, the computationally intensive field of application for which PDL
was originally developed.

Individual elements of a PDL object can be accessed through the at function, as the following
example using perldl illustrates.

perldl> p $A = sequence(12,3); # initializes 3x12 matrix $A

[
[0 1 2 3 4 5 6 7 8 9 10 11]
[12 13 14 15 16 17 18 19 20 21 22 23]
[24 25 26 27 28 29 30 31 32 33 34 35]

]

perldl> p $A->at(8,1); # prints element at nineth column and second row

60

20

perldl> p $A->at(-2,-1); # prints element at the next to last column and last row

34

Submatrices and subvectors of a PDL object can be extracted through the slice function.
Consider the following examples.

perldl> p $col = $A->slice(’6,:’); # 5th column assigned to PDL object $col

[
[6]
[18]
[30]

]

perldl> p $sub = $A->slice(’-2:-1,-2:-1’); # extracts 2x2 submatrix

[
[22 23]
[34 35]

]

16.6. Basic vector and matrix operations

In general, with matrices conformable for addition, mathematical operators such as + (addi-
tion), - (subtraction), * (multiplication), / (division), % (module division), and ** (exponen-
tiation), in PDL refer to element-by-element vector and matrix operators. For example, the
usual multiplication symbol *, a scalar multiplication, if a matrix is multiplied by a scalar,
the Hadamard product of two matrices, if the matrices have identical dimensions, or a special
matrix/vector multiplication.

use PDL;
$s = pdl 1 / 2; # scalar
$A = sequence(3, 2); # 2x3 matrix
$B = sequence(7, 3); # 3x7 matrix
$s * $A; # scalar multiplication
$A * $A; # Hadamard product
$mu = matmult($A, $B); # matrix multiplication
$A x $B; # matrix multiplication with overloaded operator ’x’
$A->transpose; #transpose of a matrix

Relational operators such as == (equal) != (not equal) > (greater than), and >= (greater equal
than),

perldl> p $R = random(6,3)

[
[0.16018677 0.50411987 0.9630127 0.69573975 0.92477417 0.18994141]
[0.3359375 0.17834473 0.99514771 0.45742798 0.99798584 0.097503662]
[0.62515259 0.094390869 0.43771362 0.93148804 0.048431396 0.89459229]

]

61

perldl> p $R > .5

[
[0 1 1 1 1 0]
[0 0 1 0 1 0]
[1 0 0 1 0 1]

]

To extract elements that satisfy particular conditions, we can use the where function, as the
following example demonstrates.

perldl> p $R -> where($R>.7)

[0.9630127 0.92477417 0.99514771 0.99798584 0.93148804 0.89459229]

16.7. Manipulating PDL objects

The dims method returns the dimensions of the PDL object as a Perl list. The nelem method
returns the number of elements in an array. As an example consider the matrix

perldl> p $C = sequence(5,5)

[
[0 1 2 3 4]
[5 6 7 8 9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]

]

then

$n = nelem($C); # assigns the number of elements in $C to the variable $n
$n = $C->nelem; # same as above
$mean = sum($C) / nelem($C); # computes average of the elements $C
$mean = avg $C; # same as above
($ncols, $nrows) =
$C->dims; # assigns the number of rows and columns to variables

Functions such as maximum, minimum, average, and sumover produce information on the
rows in a matrix. These functions return vectors with the number of elements equal to the
number of rows in the matrix. For example, maximum returns a vector whose elements are
the maximum numbers in the corresponding rows of the matrix.

perldl> p average $C

[2 7 12 17 22]

perldl> p medover $C

[2 7 12 17 22]

62

perldl> p minimum $C

[0 5 10 15 20]

perldl> p maximum $C

[4 9 14 19 24]

The same operations can be applied to columns using the xchg function which can be used
to exchange the two dimensions of the matrix.

perldl> p average $C->xchg(0,1)

[10 11 12 13 14]

perldl> p medover $C->xchg(0,1)

[10 11 12 13 14]

perldl> p minimum $C->xchg(0,1)

[0 1 2 3 4]

Note that because of the (column,row) addressing order, one-dimensional PDL objects are
treated as row vectors.

The analogous function max, min, avg and sum, perform the same operations only including
all the elements of the matrix. It is possible to obtain the location of a maximum or a
minimum with the functions maximum ind, minimum ind. For example,

perldl> p maximum_ind $C;

[4 4 4 4 4]

16.8. Regression computations

One of the most common and important applications in statistic of linear algebric computation
is in the fitting of linear models by least-squares. From numerical analysis we know that there
are several methods for the solution of the linear least-squares problem. PDL As an example,
we will use the test econometric model of Longley (1967), which makes use of a dataset
consisting of observed economic variables to illustrate hoe PDL can be used to do statistical
computations. Because of the near collinearity of the variables, this estimation problem is
also considered a difficult test for regression routines. The Longley dataset is part of StRD
by NIST. Here we show the first 6 (out of 17) records of the file named longley.dat :

Obs TOTEMP X1 X2 X3 X4 X5 X6

1 60323 83 234289 2356 1590 107608 1947

2 61122 88.5 259426 2325 1456 108632 1948

3 60171 88.2 258054 3682 1616 109773 1949

4 61187 89.5 284599 3351 1650 110929 1950

5 63221 96.2 328975 2099 3099 112075 1951

63

The first line contains the variable names; the actual data follows. The following script shows
how the dataset can be read and least square estimates of the Longley model obtained using
PDL.

use PDL;
use PDL::Slatec; # to access matinv function
($TOTEMP, $X1, $X2, $X3, $X4, $X5, $X6) = rcols ’longley.dat’, 1, 2, 3, 4, 5,
6, 7, { LINES => ’1:-1’ }; # reads longley dataset

$X0 = ones(16); # creates a vector of ones
$x = transpose cat $X0, $X1, $X2, $X3, $X4, $X5, $X6; # concatenates rows
$y = transpose $TOTEMP; # obtains a column vector y
$xt = $x->transpose; # obtains column vectors x
$ssc = $xt x $x; # sums of sq. and cross-prod. matrix
$inv = matinv($ssc); # inverts the ssc matrix
$beta_hat = $inv x $xt x $y; # computes beta estimates

The statement print $beta_hat produces:

[
[-3482258.7]
[15.061873]
[-0.035819188]
[-2.0202298]
[-1.0332269]
[-0.051104065]
[1829.1515]

]

The following block of code shows how the standard errors of the estimates can be obtained.

($k, $n) = $x->dims; # extracts dimensions of $x
$df = $n - $k; # degrees of freedom
$y_hat = $x x $beta_hat; # fitted values
$u_hat = $y - $y_hat; # least squares residuals
$ssr = transpose($u_hat) x $u_hat; # sums of squared residuals
$sigma_hat2 = $ssr / $df; # error variance estimate
$covb = $sigma_hat2 * $inv; # var-cov matrix estimate
$seb = sqrt($covb->diagonal(0, 1)); # standard errors of the estimates

The statement print $covb produces:

[890420.39 84.914926 0.033491008 0.48839968 0.21427416 0.2260732 455.4785]

More accurate estimates can be obtained by solving the least squares problem by factoring
the design matrix using the singular value decomposition (SVD).

use PDL::Math; # to access SVD routine
($u, $s, $v) = svd($x);
$dw = zeroes($k, $k);
$dw->diagonal(0, 1) .= 1 / $s; # creates diagonal matrix
$beta_hat = $v x $dw x (transpose($u) x $y);

64

Table XII: Benchmark regression results for Longley’s model

Variable
Estimate Estimate Certified LRE LRE
(X′X)−1 SVD value (X′X)−1 SVD

TOTEMP −3482258·65178986 −3482258·63459535 −3482258·63459582 8·306 12·869
X1 15·0618725479599 15·0618722713199 15·0618722713733 7·736 11·450
X2 −0·0358191882359904 −0·0358191792925778 −0·035819179292591 6·603 12·434
X3 −2·0202297665921 −2·02022980381764 −2·02022980381683 7·735 12·397
X4 −1·03322687441975 −1·03322686717374 −1·03322686717359 8·154 12·838
X5 −0·0511040653404145 −0·0511041056533019 −0·0511041056535807 6·103 11·263
X6 1829·15147282475 1829·15146461331 1829·15146461355 8·348 12·882

Table XII summarizes the benchmark regressions results.

16.9. Numerical optimization

Optimization is an important tool in statistical computing. Though, in most statistical ap-
plications solutions to optimization problems, such as linear least squares, can be expressed
in matrix notation, and are routinely solved using linear algebraic computations as seen, for
example, in Section 16.8 starting on page 62, in more general settings, numerical optimization
methods are needed. Maximizing non-tractable likelihood functions, fitting non-linear models,
and applying robust methods are just a few examples of statistical application where numerical
optimization is an essential tool. The PDL::Opt::Simplex module provides the general pur-
pose nonlinear programming simplex method for locating the minimum of a multi-parameter
function. The following code illustrates how the module can be used in finding a minimum
of the standard difficult test function of a minimization routine introduced by Rosenbrock
(1960) given by the equation

f(x, y) = 100 (x− y)2 + (1 − x)2.

starting from the point (0, 0). The function has a global minimum at the point (1, 1) where
it attains a value of 0.

use PDL;
use PDL::Opt::Simplex;
$minsize = 1.e-6;
$maxiter = 100;

sub rosenbrock {
($xv) = @_;
$x = $xv->slice("(0)");
$y = $xv->slice("(1)");
return 100 * ($x - $y)**2 + (1 - $x)**2;

}

$init = pdl [0, 0];
$initsize = 2;
($optimum, $ssize) =
simplex($init, $initsize, $minsize, $maxiter, \&rosenbrock);

print "OPTIMUM = $optimum \n";
print "SSIZE = $ssize\n";

65

The output returned is

OPTIMUM =
[

[0.99999962 0.99999961]
]

SSIZE = 9.90704080273217e-007

For statistical computing purposes the default information provided by the function simplex
might not be enough. For instance, from a numerical analysis point of view, to assess whether
convergence has occurred, the number of iterations performed by the optimization routine is
required whereas, from a statistical point of view, the value of the likelihood function might
be necessary for testing purposes. To obtain a more informative output that includes also
the coordinates of the vertices of the simplex for each iteration with the associated function
values and the iteration number, we can add to the above script the function logs, defined as

sub logs {
print "Vertices: $_[0]\n";
print "Values: $_[1]\n";
print "Distance: $_[2]\n";
print
"Iteration: $_[3]\n\n"; # needs slight change in the simplex routine

}

The function call needs to be modified by including the optional parameter \&logs as last
input. Note also that to get the iteration count the file containing the source code of the
module was slightly modified.40 In our example, the last two steps taken by the simplex
method are shown below.

Vertices:
[

[1.0000003 1.0000003]
[1.0000002 1.0000001]
[0.999999 0.999999]

]

Values: [1.61655e-013 4.2647055e-013 1.0071831e-012]
Distance: 1.86295117510571e-006
Iteration: 55

Vertices:
[

[1.0000003 1.0000003]
[1.0000002 1.0000001]
[0.99999962 0.99999961]

]

Values: [1.61655e-013 4.2647055e-013 1.4865345e-013]
Distance: 9.90704080273217e-007
Iteration: 56

40The extra parameter 100-$maxiter was added to the function call &{$logsub}($simp,$vals,$ssize) at
line 189 of the source code file simplex.pm.

66

Other modules useful for optimization include Math::Brent, an implementation of Brent’s
method for one-dimensional minimization of a function without using derivatives, and Math::LP
which provides an object oriented interface to defining and solving mixed linear-integer pro-
grams, using Berkelaar’s lp solve library as the underlying solver.

17. Embedding statistical software in Perl

Perl offers wide range of ways to “communicate” with other applications. We have seen, for
instance, how files and pipes can be used for this purpose. These approaches, though powerful,
are a limited form of “one-way” communication. More advanced form of communication are
also supported by Perl. The main disadvantage is that their implementation is often platform
dependent. Consider extending Perl with procedures from a more specialized statistical or
numerical application. We would like, for instance, to use R’s advanced statistical procedures
and visualizations, in our Perl program, within a Win32 operating system.

DCOM, an acronym for Distributed Component Object Model, is a an object-based distributed
system developed by Microsoft to build object-based applications. DCOM objects expose in-
terfaces that allow other DCOM-enabled applications to access, remotely, their functionality.
Perl can be DCOM-enabled using the Win32::OLE module. This module provides the means
to control many Win32 applications, including DCOM-enabled statistical and numerical soft-
ware, from within a Perl scripts.

An implementation of R as a Microsoft DCOM server is available from the Comprehensive
R Archive Network (CRAN) (http://CRAN.R-project.org/). Consider the following Perl
script that: 1) downloads the Hooker’s dataset (see, e.g, Weisberg 1995) from STATLIB, 2)
extracts and prepares the data, and finally 3) uses R to fit a regression model and plot the
residuals.

downloads from Web file containing data examples from Weisberg (1985)
use LWP::Simple;
$data = get(’http://www.stat.unipg.it/stat/statlib/datasets/alr’);

extracts data of example on page 28 of book from file to Perl variables
@lines = split(/\n/, $data);
while ($_ = shift @lines) {

if (/alr28/ .. /alr29/) {
if ((($temp, $pres) = split(/\s+/, $_)) == 2) {

push(@temp, $temp); # stores temperature
push(@pres, $pres); # stores pressure

}

}
}

creates DCOM server object
use Win32::OLE;
$R =
Win32::OLE->new(’StatConnectorSrv.StatConnector’)
;

$R->Init(’R’);

http://CRAN.R-project.org/

67

runs regression in R
$R->EvaluateNoReturn(’reg<-lm(pres~temp)’);

gets residuals from R into Perl array
$ref_to_residuals = $R->Evaluate(’reg$res’);

prints comma separated residuals
print join(’,’, @$ref_to_residuals);

plots residuals in R
$R->EvaluateNoReturn(

’plot(reg$res, pch=19, xlab="Observations", ylab="Residuals")’);
$R->EvaluateNoReturn(’abline(h=0)’);

closes connection with R
$R->Close;

When executed, the script produces the following textual output

0.812316790922684,0.424485959040852,0.629993463395295,-0.0473430501095586,...

and creates a window (see Figure 4) containing a residual plot.

Information and examples on how to use S-PLUS are provided in Venables and Ripley (2000).
Other approaches are available to connect Perl with other useful applications. For instance,
the module Inline::Octave allows the matrix language Octave to be used from within Perl
programs.

68

Figure 4: Residual plot

69

18. Conclusion

Perl is a free, general purpose programming language, that can be employed in the solution of
a multiplicity of tasks faced regularly by statisticians. In Part I of the paper, we have shown,
by means of practical examples, how Perl can assist the statistician in activities ranging from
data collection and preparation to the typesetting and dissemination of the final results. Perl
can automate what would otherwise be tedious, repetitive, and error prone activities. We
also described how modules, that enhance Perl’s functionality, can be employed effectively by
statisticians to process data. In Part II we investigated how Perl can be used for statistical
computations. We have demonstrated how Perl can be used to perform a variety computa-
tional tasks, from simple statistical analyses to more complex statistical computations, by
extending it with modules and specialized applications. We have also extensively tested Perl’s
statistical and numerical modules and shown how they can be effectively used, in conjunction
with Perl’s semi-numerical and non-numerical functionality.

Throughout the paper, we have tried to emphasize the advantage of Perl, used as a scripting
language, combined with its more advanced features, such as network programming support,
object-orientation, and extensibility, in solving statistical problems. We have demonstrated
how Perl can be used as a platform to make statistical computation projects more easily
reproducible.

Acknowledgements

The author would like to thank Jan de Leeuw, Colin McClean, Jan Minx, and three anonymous
referees for helpful comments and suggestions.

70

Appendices

A. Perl code for LRE routine

sub re {

my ($est, $cert) = @_;

return abs($cert - $est) / abs($cert);

}

sub log10 {

my $n = shift;

return log($n) / log(10);

}

sub lre {

my ($est, $cert, $nosd) = @_;

my $aest = abs(est);

if ($cert == 0) {

if (abs($est) > 1) {

return 0;

}

else {

(-log10($aest) < $nosd) ? return -log10($aest) : return $nosd;

}

}

elsif ($cert == $est) {

return $nosd;

}

elsif (abs($est / $cert) > 2 || abs($est / $cert) < 1 / 2) {

return 0;

}

else {

(-log10(re($est, $cert)) < $nosd)

? return -log10(re($est, $cert))

: return $nosd;

}

}

B. Perl code for DIEHARD test hex input files

Generates hex input file for DIEHARD test of \proglang{Perl}’s rand()

$seed = 4343434;

srand($seed);

open(OUT, ">rand.hex");

select(OUT); # selects OUT as default output filehandle

for ($i = 0 ; $i < 3e6 ; $i++) {

printf "%08x", int(rand(4294967296)); # prints random 32-bit integer

if ($i % 10 == 9) { printf "\n" }; # starts a new line every 10 no.

}

Generates hex input file for DIEHARD test of the Math::Random module

71

use Math::Random;

$seed_1 = 1234567890;

$seed_2 = 1234567890;

@seed = ($seed_1, $seed_2);

random_set_seed(@seed);

open(OUT, ">randlib.hex");

select(OUT); # selects OUT as default output filehandle

for ($i = 0 ; $i < 3e6 ; $i++) {

printf "%08x",

int(random_uniform(1, 0, 4294967297)); # prints random 32-bit integer

if ($i % 10 == 9) { printf "\n" }

; # starts a new line every 10 no.

}

Generates hex input file for DIEHARD test of the Math::Random::TT800 module

use Math::Random::TT800;

open(OUT, ">TT800.hex");

select(OUT); # selects OUT as default output filehandle

@seed = (

913860295, 1086204226, 1322218135, 2107674887, 1421458520, 2141267188,

575078061, 1796978786, 476959775, 129791043, 2047223682, 1572134678,

571817061, 629482166, 694818294, 1914617414, 2018740633, 234577687,

1795180530, 1071903645, 821640312, 456869517, 829823942, 1469601523,

2145855977

);

$rand = new Math::Random::TT800 @seed;

for ($i = 0 ; $i < 3e6 ; $i++) {

printf "%08x", $rand->next_int(); # prints random 32-bit integer

if ($i % 10 == 9) { printf "\n" }; # starts a new line every 10 no.

}

Generates hex input file for DIEHARD test of the Math::Random::MT module

use Math::Random::MT;

$seed = 4321; # sets the seed

$gen = Math::Random::MT->new($seed); # creates generator

open(OUT, ">mt.hex");

select(OUT); # selects OUT as default output filehandle

for ($i = 0 ; $i < 3e6 ; $i++) {

printf "%08x", $gen->rand(2**32); # prints random 32-bit integer

if ($i % 10 == 9) { printf "\n" }; # starts a new line every 10 no.

}

C. Output of speed benchmarking of random modules

Benchmark: timing 3000000 iterations of MT, RANDLIB, TT800, rand...

MT: 20 wallclock secs (19.92 usr + 0.00 sys = 19.92 CPU) @ 150587.29/s

(n=3000000)

RANDLIB: 11 wallclock secs (10.80 usr + 0.00 sys = 10.80 CPU) @ 277829.23/s

(n=3000000)

TT800: 6 wallclock secs (6.17 usr + 0.00 sys = 6.17 CPU) @ 486066.10/s

(n=3000000)

rand: 0 wallclock secs (0.67 usr + 0.00 sys = 0.67 CPU) @ 4464285.71/s

(n=3000000)

72

D. Example of Perl code for reproducible results

downloads and decompresses diehard programs

use LWP::Simple;

getstore("http://stat.fsu.edu/pub/diehard/diehard.zip", "diehard.zip");

system(unzip diehard); # requires unzip program

generates hex test file using TT800 pseudorandom number generator

use Math::Random::TT800;

open(OUT, ">TT800.hex");

select(OUT); # selects OUT as default output filehandle

for ($i = 0 ; $i < 3e6 ; $i++) {

printf "%08x", $rand->next_int(); # prints random 32-bit integer

if ($i % 10 == 9) { printf "\n" }; # starts a new line every 10 no.

}

converts hex file to binary file using utility program asc2bin

open(INPUT, "| asc2bin");

select(INPUT);

print "\n";

print "\n";

print "\n";

print "TT800.hex\n"; # supplies hex input file name

print "TT800.bin\n"; # supplies binary output file name

close(INPUT);

performs DIEHARD test

open(INPUT, "| diehard");

select(INPUT);

print "TT800.bin\n"; # supplies binary input file name

print "TT800.out\n"; # supplies test output file name

print "111111111111111\n"; # ask for all 15 tests

close(INPUT);

extracts p-values from output file

open(IN, "TT800.out");

while ($line = <IN>) {

if ($line =~ m/p-?(?:values?)?[:=]?\s*(\.\d+)/) {

push (@p_vals, $1); # stores p-values

}

}

performs statistical analysis on p-values

use Statistics::Descriptive;

$stat = Statistics::Descriptive::Full->new();

$stat->add_data(@p_vals); # sends data to object

$count = $stat->count(); # gets number of p-values from object

%f = $stat->frequency_distribution(10); # returns a frequency table

prints final result in LaTeX table format

open(TEX, ">table.tex");

select(TEX); # selects OUT as default output filehandle

print "Value & Total matches \\\\\n";

for (sort { $a <=> $b } keys %f) {

$co = 100 * $f{$_} / $count;

printf "%5.1f & %11.0f \\\\\n", $_, $co;

}

73

References

Abramowitz M, Stegun I (1965). Handbook of Mathematical Functions. Dover, New York.

Anscombe F (1973). “Graphs in Statistical Analysis.” American Statistican, 27, 17–21.

Barron D (2000). The World of Scripting Languages. John Wiley & Sons, New York.

Belsey DA, Kuh E, Welsch RE (1980). Regression Diagnostics. John Wiley & Sons, New
York.

Brown BW, Lovato J, Russell K, Venier J (1997). “RANDLIB: Library of FORTRAN Routines
for Random Number Generation.” Available at http://odin.mdacc.tmc.edu/anonftp/.

Buckheit JB, Donoho DL (1995). “Wavelab and Reproducible Research.” In A Antoniadis,
G Oppenheim (eds.), “Wavelets and Statistics,” pp. 55–81. Springer-Verlag, Berlin, New
York.

Burke SM (2002). Perl and LWP: Fetching Web Pages, Parsing HTML, Writing Spiders and
More. O’Reilly & Associates, Inc., Sebastopol, CA, USA. ISBN 0-596-00178-9.

Christiansen T, Torkington N (2003). Perl Cookbook: Solutions and Examples for Perl Pro-
grammers. O’Reilly & Associates, Inc., Sebastopol, CA, USA, second edition.

Devroye D (1986). Non-Uniform Random Variate Generation. Springer-Verlag, New York.

Feller W (1968). An Introduction to Probability Theory, Vol. 1. Wiley, New York, third
edition.

Friedl JEF (2002). Mastering Regular Expressions. O’Reilly & Associates, Inc., Sebastopol,
CA, USA, second edition.

Galton F (1880). “Visualised Numerals.” Nature, 21, 252–256.

Guelich S, Gundavaram S, Birznieks G (2000). CGI Programming with Perl. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, second edition.

Hill TP (1996). “A Statistical Derivation of the Significant-Digit Law.” Statistical Science,
10, 354–363.

Knüsel L (1989). “Computergestützte Berechnung Statistischer Verteilungen.” Technical
report, Oldenburg, München-Wien, (an English version of the program is available from
http://www.stat.uni-muenchen.de/~knuesel/elv).

Knuth DE (1984). The TEXbook. Addison-Wesley Publishing Company.

L’Ecuyer P, Côté S (1991). “Implementing a Random Number Package with Splitting Facili-
ties.” ACM Transactions on Mathematical Software, 17(1), 98–111.

Lewis TG, Payne WH (1973). “Generalized Feedback Shift Register Pseudorandom Number
Algorithm.” Journal of the ACM, 20(3), 456–468.

http://odin.mdacc.tmc.edu/anonftp/
http://www.stat.uni-muenchen.de/~knuesel/elv

74

Longley JR (1967). “An Appraisal of Least Squares Programs for the Electronic Computer
from the Point of View of the User.” Journal of the American Statistical Association,
62(319), 819–841.

Marsaglia G (1996). “DIEHARD: A Battery of Tests of Randomness.” Available at http:
//stat.fsu.edu/pub/diehard/.

Matsumoto M, Kurita Y (1992). “Twisted GFSR Generators.”ACM Transactions on Modeling
and Computer Simulations, 2, 179–194.

Matsumoto M, Kurita Y (1994). “Twisted GFSR Generators II.” ACM Transactions on
Modeling and Computer Simulations, 4, 254–266.

Matsumoto M, Nishimura T (1998). “A 623-Dimensionally Equidistributed Uniform Pseudo-
random Number Generator.” ACM Transactions on Modeling and Computer Simulations,
8(1), 3–30.

McCullough B (1998). “Assessing the Reliability of Statistical Software.” The American
Statistician, 52, 358–366.

McCullough B (1999). “Assessing the Reliability of Statistical Software: Part II.” The Amer-
ican Statistician, 53, 149–159.

Orwant J, Hietaniemi J, Macdonald J (1999). Mastering Algorithms with Perl. O’Reilly &
Associates, Inc., Sebastopol, CA, USA.

Prechelt L (2000). “An Empirical Comparison of Seven Programming Languages.” Computer,
33(10), 23–29.

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1995). Numerical Recipes in C.
Cambridge University Press, Cambridge, second edition.

Rogers J, Filliben J, Gill L, Guthrie W, Lagergren E, Vangel M (1998). “Statistical Refer-
ence Datasets for Assessing the Numerical Accuracy of Statistical Software.” NIST 1396,
National Institute of Standards and Technology, Bethesda.

Rosenbrock H (1960). “An Automatic Method for Finding the Greatest or Least Value of a
Function.” Computer Journal, 3, 175–184.

Schwartz RL, Phoenix T (2001). Learning Perl: Making Easy Things Easy and Hard Things
Possible. O’Reilly & Associates, Inc., Sebastopol, CA, USA, third edition.

Sebesta RW (1999). A Little Book on Perl. Prentics-Hall, Inc., New Jersey.

Stein L (2001). Network Programming with Perl. Addison-Wesley Publishing Company, New
Jersey.

Venables W, Ripley B (2000). S Programming. Springer-Verlag, New York.

Wall L, Christiansen T, Orwant J (2000). Programming Perl. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, third edition.

Weisberg S (1995). Applied Linear Regression. John Wiley & Sons, New York, second edition.

http://stat.fsu.edu/pub/diehard/
http://stat.fsu.edu/pub/diehard/

75

Affiliation:

Baiocchi Giovanni
Department of Economics and Finance
University of Durham
Durham, DH1 3HY, United Kingdom
E-mail: giovanni.baiocchi@durham.ac.uk
URL: http://www.dur.ac.uk/dbs/

Journal of Statistical Software Submitted: 2003-02-21
May 2004, Volume 11, Issue 1. Accepted: 2004-05-16
http://www.jstatsoft.org/

mailto:giovanni.baiocchi@durham.ac.uk
http://www.dur.ac.uk/dbs/
http://www.jstatsoft.org/

	Introduction
	Typographical and style conventions used
	I Data Processing
	Perl as a scripting language
	Perl documentation and other resources
	Introduction to the Perl language
	Basic data types
	Basic input/output
	Program control statements
	User defined functions
	Regular expressions
	References

	Running Perl programs
	Data processing with Perl
	Reading data
	Examples of recoding, validating, and transforming variables
	Sorting observations

	Enhancing Perl with modules
	WWW interfacing with Perl

	II Statistical Computing
	Introduction
	Reproducible statistical computations using Perl
	Assessing the numerical reliability of modules
	Speed of execution benchmarking in Perl
	A Survey of modules for statistical analysis
	Descriptive statistics
	Two-sample t test
	Statistical distributions
	ANOVA and Kruskal-Wallis tests
	Simple linear regression
	Random number generation
	Introduction
	Survey of Perl RNG modules
	Statistical tests
	RNG timings

	An overview of modules for numerical linear algebra
	The Perl Data Language extension module
	PDL documentation and other resources
	PDL shell
	Basic PDL data type
	Constructing PDL objects
	Indexing PDL objects
	Basic vector and matrix operations
	Manipulating PDL objects
	Regression computations
	Numerical optimization

	Embedding statistical software in Perl
	Conclusion
	Appendices
	Perl code for LRE routine
	Perl code for DIEHARD test hex input files
	Output of speed benchmarking of random modules
	Example of Perl code for reproducible results

